1. bookVolume 30 (2022): Edition 2 (May 2022)
Détails du magazine
License
Format
Magazine
eISSN
1844-0835
Première parution
17 May 2013
Périodicité
1 fois par an
Langues
Anglais
access type Accès libre

Periodic and Solitary Wave Solutions for the One-Dimensional Cubic Nonlinear Schrödinger Model

Publié en ligne: 02 Jun 2022
Volume & Edition: Volume 30 (2022) - Edition 2 (May 2022)
Pages: 45 - 62
Reçu: 23 Jul 2021
Accepté: 25 Sep 2021
Détails du magazine
License
Format
Magazine
eISSN
1844-0835
Première parution
17 May 2013
Périodicité
1 fois par an
Langues
Anglais
Abstract

Using a similar approach as Korteweg and de Vries, [19], we obtain periodic solutions expressed in terms of the Jacobi elliptic function cn, [3], for the self-focusing and defocusing one-dimensional cubic nonlinear Schrödinger equations. We will show that solitary wave solutions are recovered through a limiting process after the elliptic modulus of the Jacobi elliptic function cn that describes the periodic solutions for the self-focusing nonlinear Schrödinger model.

Keywords

MSC 2010

[1] Ablowitz, A. M., (2011). Nonlinear Dispersive Waves. USA: Cambridge University Press.10.1017/CBO9780511998324 Search in Google Scholar

[2] Ablowitz, A. M., Clarkson, P. A., (1991). Solitons, Nonlinear Evolution Equations and Inverse Scattering. USA: Cambridge University Press.10.1017/CBO9780511623998 Search in Google Scholar

[3] Abramowitz, M, Stegun, I. A., (1983). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series • 55. Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 569. Search in Google Scholar

[4] Alamri, S. Z., Seadawy, A. R., Al-Sharari, H. M., (2019). Study of optical soliton fibers with power law model by means of higher order nonlinear Schrödinger dynamical system. Results in Physics, Elsevier, Vol. 13, 102251.10.1016/j.rinp.2019.102251 Search in Google Scholar

[5] Arshed, S., Arshad, L., (2019). Optical soliton solutions for nonlinear Schrödinger equation. Optik, Elsevier, Vol. 195, 163077.10.1016/j.ijleo.2019.163077 Search in Google Scholar

[6] Balac, S., Fernandez, A., Mahé, F., Texier-Picard, R., (2016). The Interaction Picture Method for Solving the Generalized Nonlinear Schrödinger Equation in Optics, hal-00850518v2.10.1051/m2an/2015060 Search in Google Scholar

[7] Christ, R. D., Wernli, R. L. Sr., (2014). The Ocean Environment, The ROV Manual, Second Edition. Science Direct, https://www.sciencedirect.com. Search in Google Scholar

[8] Congy, T., El, G. A., Hoefer, M. A., Shearer, M., (2018). Nonlinear Schrödinger equations and the universal description of dispersive shock wave structure, Studies in Applied Mathematics, Vol. 142, 241-268. Search in Google Scholar

[9] Dostal, L., (2019). The Effect of Random Wind Forcing in the Nonlinear Schrödinger Equation. Fluids, Vol. 4, 121; doi:10.3390/fluids4030121.10.3390/fluids4030121 Search in Google Scholar

[10] Drazin, P. G., Johnson, R. S., (1989). Solitons: an introduction. USA: Cambridge, University Press.10.1017/CBO9781139172059 Search in Google Scholar

[11] Faddeev, L. D., Takhtajan, L. A., (2007). Hamiltonian Methods in the Theory of Solitons. USA: Springer. Search in Google Scholar

[12] Fibich, G., Gavish, N., Wang, X-P, (2005). New singular solutions of the nonlinear Schrödinger equation. Physica D, Elsevier, Vol. 211, 193220.10.1016/j.physd.2005.08.007 Search in Google Scholar

[13] Gardner, C. S., Greene, J. M., Kruskal, M. D., Miura, R. M., (1967). Method for Solving the Korteweg-de Vries Equation. Physical Review Letters, Vol. 19, No. 19, 1095-1097.10.1103/PhysRevLett.19.1095 Search in Google Scholar

[14] Haines, G., (1974). Sound Underwater. Crane Russak and Company Inc., NY., USA. Search in Google Scholar

[15] Henderson, K. L., Peregrine, D. H., Dold, J. W., (1999). Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave Motion, Elsevier. Vol. 29, 341361.10.1016/S0165-2125(98)00045-6 Search in Google Scholar

[16] Jain, S., Ali, M. M., Sen, P. M., (2007). Estimation of sonic layer depth from surface parameters. Advancing Earth and Space Science, Geophysical Research Letters, Vol. 34, https://doi.org/10.1029/2007GL030577.10.1029/2007GL030577 Search in Google Scholar

[17] Kamchatnov, A. M., (2000). Nonlinear Periodic Waves And Their Modulations: An Introductory Course. Singapore : World Scientific. 2000.10.1142/4513 Search in Google Scholar

[18] Kamchatnov, A. M., (2001). Wavebreaking in Hydrodynamics of the Defocusing NLS Equation. In: Abdullaev, F., Bang, O., Srensen M. P., (eds). Nonlinearity and Disorder: Theory and Applications. NATO Science Series (Series II: Mathematics, Physics and Chemistry), Vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0542-5_20.10.1007/978-94-010-0542-5_20 Search in Google Scholar

[19] Korteweg, D. J., de Vries, G., (1895). On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine and Journal of Science, Series 5, Vol. 39, No. 240, 422-443. Search in Google Scholar

[20] Lax D. P., (1968). Integrals of Nonlinear Equations of Evolution and Solitary Waves. AEC Reaserch and Development Report, New York University, Courant Institute Library, NYO-1480-87.10.1002/cpa.3160210503 Search in Google Scholar

[21] Liu, C., Li, Y. Y., Gao, M., Wang, Z., Dai, Z., Wang, C., (2015). Rogue wave solutions of the nonlinear Schrödinger equation with variable coefficients. PRAMANA Journal of Physics, Vol. 85, No. 6, 10631072.10.1007/s12043-015-0954-3 Search in Google Scholar

[22] McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright 2003 by The McGraw-Hill Companies, Inc. Search in Google Scholar

[23] Peregrine, H. D., (1982). Water waves, Nonlinear Schrödinger Equations and their Solutions. Journal of the Australian Mathematical Society, Series B, No. 19, 16-43. Search in Google Scholar

[24] Russell, J. R., (1845). Report on Waves. Report of the Fourteenth Meeting of the British Association of the Advancement of Science, York, September 1844, 311-391, London. Search in Google Scholar

[25] Schrödinger E., (1926). An Undulatory Theory of the Mechanics of Atoms and Molecules. The Physical Review, Vol. 28, No. 6, 1049-1070.10.1103/PhysRev.28.1049 Search in Google Scholar

[26] Snyder, S. D., (2000). Control of Sound Propagation in Ducts. USA: Springer. Search in Google Scholar

[27] Tala-Tebue, E., Djoufack, Z. I., Kamdoum-Tamo, P. H., Kenfack-Jiotsa, A., (2018). Cnoidal and solitary waves of a nonlinear Schrödinger equation in an optical fiber. Optik, Vol. 174, 508-512.10.1016/j.ijleo.2018.08.094 Search in Google Scholar

[28] Urick, R. J., (1983). Principles of Underwater Sound, Third edition. USA: Connecticut: Peninsula Publishing. Search in Google Scholar

[29] Whittaker, E. T., Watson, G. N., (1927). A Course of Modern Analysis. Fourth edition. Cambridge University Press, Cambridge, United Kingdom. Search in Google Scholar

[30] Yamgoué, S. B., Deffo, G. R., Tala-Tebue, E., Pelap, F. B., (2018). Exact solitary wave solutions of a nonlinear Schrödinger equation model with saturable-like nonlinearities governing modulated waves in a discrete electrical lattice. Chinese Physics B, Vol. 27, No. 12, 126303.10.1088/1674-1056/27/12/126303 Search in Google Scholar

[31] Zakharov V. E., Shabat A. B., (1972). Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media. Soviet Physics JETP. Vol. 34, No. 1, 118-134. Search in Google Scholar

[32] Zakharov V. E., Kuznetsov E. A., (2012). Solitons and collapses: two evolution scenarios of nonlinear wave systems. Physics-Uspekhi. Vol. 55, No. 6, 535-556.10.3367/UFNe.0182.201206a.0569 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo