Accès libre

A Generalization of Archimedes’ Theorem on the Area of a Parabolic Segment

,  et   
08 juil. 2021
À propos de cet article

Citez
Télécharger la couverture

Archimedes’ well known theorem on the area of a parabolic segment says that this area is 4/3 of the area of a certain inscribed triangle. In this paper we generalize this theorem to the n-dimensional euclidean space, n ≥ 3. It appears that the ratio of the volume of an n-dimensional solid bounded by an (n − 1)-dimensional hyper-paraboloid and an (n − 1)-dimensional hyperplane and the volume of a certain inscribed cone (we analogously repeat Archimedes’ procedure) depends only on the dimension of the euclidean space and it equals to 2n/(n +1).

Langue:
Anglais
Périodicité:
3 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales