Accès libre

On weakly S-prime ideals of commutative rings

,  et   
08 juil. 2021
À propos de cet article

Citez
Télécharger la couverture

Let R be a commutative ring with identity and S be a multiplicative subset of R. In this paper, we introduce the concept of weakly S-prime ideals which is a generalization of weakly prime ideals. Let P be an ideal of R disjoint with S. We say that P is a weakly S-prime ideal of R if there exists an sS such that, for all a, bR, if 0 ≠ abP, then saP or sbP. We show that weakly S-prime ideals have many analog properties to these of weakly prime ideals. We also use this new class of ideals to characterize S-Noetherian rings and S-principal ideal rings.

Langue:
Anglais
Périodicité:
3 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales