1. bookVolume 29 (2021): Edition 2 (June 2021)
Détails du magazine
License
Format
Magazine
eISSN
1844-0835
Première parution
17 May 2013
Périodicité
1 fois par an
Langues
Anglais
access type Accès libre

Two Points Taylor’s Type Representations for Analytic Complex Functions with Integral Remainders

Publié en ligne: 08 Jul 2021
Volume & Edition: Volume 29 (2021) - Edition 2 (June 2021)
Pages: 131 - 154
Reçu: 05 Sep 2020
Accepté: 15 Oct 2020
Détails du magazine
License
Format
Magazine
eISSN
1844-0835
Première parution
17 May 2013
Périodicité
1 fois par an
Langues
Anglais
Abstract

In this paper we establish some two point weighted Taylor’s expansions for analytic functions f : D ⊆ ℂ→ ℂ defined on a convex domain D. Some error bounds for these expansions are also provided. Examples for the complex logarithm and the complex exponential are also given.

Keywords

MSC 2010

[1] M. Akkouchi, Improvements of some integral inequalities of H. Gauchman involving Taylor’s remainder. Divulg. Mat. 11 (2003), no. 2, 115–120. Search in Google Scholar

[2] G. A. Anastassiou, Taylor-Widder representation formulae and Ostrowski, Grüss, integral means and Csiszar type inequalities. Comput. Math. Appl. 54 (2007), no. 1, 9–23. Search in Google Scholar

[3] G. A. Anastassiou, Ostrowski type inequalities over balls and shells via a Taylor-Widder formula. J. Inequal. Pure Appl. Math. 8 (2007), no. 4, Article 106, 13 pp. Search in Google Scholar

[4] S. S. Dragomir, New estimation of the remainder in Taylor’s formula using Grüss’ type inequalities and applications. Math. Inequal. Appl. 2 (1999), no. 2, 183–193. Search in Google Scholar

[5] S. S. Dragomir and H. B. Thompson, A two points Taylor’s formula for the generalised Riemann integral. Demonstratio Math. 43 (2010), no. 4, 827–840. Search in Google Scholar

[6] H. Gauchman, Some integral inequalities involving Taylor’s remainder. I. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 26, 9 pp. (electronic). Search in Google Scholar

[7] H. Gauchman, Some integral inequalities involving Taylor’s remainder. II. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Article 1, 5 pp. (electronic). Search in Google Scholar

[8] D.-Y. Hwang, Improvements of some integral inequalities involving Taylor’s remainder. J. Appl. Math. Comput. 16 (2004), no. 1-2, 151–163. Search in Google Scholar

[9] A. I. Kechriniotis and N. D. Assimakis, Generalizations of the trapezoid inequalities based on a new mean value theorem for the remainder in Taylor’s formula. J. Inequal. Pure Appl. Math. 7 (2006), no. 3, Article 90, 13 pp. (electronic). Search in Google Scholar

[10] Z. Liu, Note on inequalities involving integral Taylor’s remainder. J. In-equal. Pure Appl. Math. 6 (2005), no. 3, Article 72, 6 pp. (electronic). Search in Google Scholar

[11] W. Liu and Q. Zhang, Some new error inequalities for a Taylor-like formula. J. Comput. Anal. Appl. 15 (2013), no. 6, 1158–1164. Search in Google Scholar

[12] N. Ujević, Error inequalities for a Taylor-like formula. Cubo 10 (2008), no. 1, 11–18. Search in Google Scholar

[13] Z. X. Wang and D. R. Guo, Special Functions, World Scientific Publ. Co., Teaneck, NJ (1989). Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo