Accès libre

Notes on the zero-divisor graph and annihilating-ideal graph of a reduced ring

  
08 juil. 2021
À propos de cet article

Citez
Télécharger la couverture

We translate some graph properties of 𝔸𝔾(R) and Γ(R) to some topological properties of Zariski topology. We prove that the facts “(1) The zero ideal of R is an anti fixed-place ideal. (2) Min(R) does not have any isolated point. (3) Rad(𝔸𝔾 (R)) = 3. (4) Rad(Γ(R)) = 3. (5) Γ(R) is triangulated (6) 𝔸𝔾 (R) is triangulated.” are equivalent. Also, we show that if the zero ideal of a ring R is a fixed-place ideal, then dtt(𝔸𝔾 (R)) = |ℬ(R)| and also if in addition |Min(R)| > 2, then dt(𝔸𝔾 (R)) = |ℬ (R)|. Finally, it is shown that dt(𝔸𝔾 (R)) is finite if and only if dtt(𝔸𝔾 (R)) is finite if and only if Min(R) is finite.

Langue:
Anglais
Périodicité:
3 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales