Accès libre

Irreducibility Criteria for Compositions and Multiplicative Convolutions of Polynomials with Integer Coefficients

,  et   
10 déc. 2014
À propos de cet article

Citez
Télécharger la couverture

We provide irreducibility criteria for multiplicative convolutions of polynomials with integer coefficients, that is, for polynomials of the form hdeg f · f(g/h), where f, g, h are polynomials with integer coefficients, and g and h are relatively prime. The irreducibility conditions are expressed in terms of the prime factorization of the leading coefficient of the polynomial hdeg f · f(g/h), the degrees of f, g, h, and the absolute values of their coefficients. In particular, by letting h = 1 we obtain irreducibility conditions for compositions of polynomials with integer coefficients.

Langue:
Anglais
Périodicité:
3 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales