Accès libre

Quantification, sources, and associated risks of 16-priority polycyclic aromatic hydrocarbons from selected land-use impacted soils

À propos de cet article

Citez

[1]. O.L. Faboya, S.O. Sojinu, B.J. Oguntuase, O.O. Sonibare, Impact of forest fires on polycyclic aromatic hydrocarbons concentrations and stable carbon isotope compositions in burnt soils from tropical forest, Nigeria, Scientific African 8 (2020) e0033. https://doi.org/10.1016/j.sciaf.2020.e0033110.1016/j.sciaf.2020.e00331 Search in Google Scholar

[2]. O.O. Emoyan, O.O. Ejecha, G.O. Tesi, Concentration assessment and source evaluation of 16 priority polycyclic aromatic hydrocarbons in soils from selected vehicle-parks in southern Nigeria, Scientific African 7 (2020) e00296. https://doi.org/10.1016/j.sciaf.2020.e0029610.1016/j.sciaf.2020.e00296 Search in Google Scholar

[3]. ATSDR. The priority list of hazardous substances. Division of toxicology and human health sciences, Agency for Toxic Substances and Disease Registry (2017). https://www.atsdr.cdc.gov/spl/index.html Search in Google Scholar

[4]. A.K. Sakhi, E. Cequier, R. Becher, A.K. Bølling, A.R. Borgen, M. Schlabach, N. Schmidbauer, G. Becher, P. Schwarze, C. Thomsen, Concentrations of selected chemicals in indoor air from Norwegian homes and schools, Science of The Total Environment 674 (2019) 1-8. DOI: 10.1016/j.scitotenv.2019.04.08610.1016/j.scitotenv.2019.04.08631003082 Search in Google Scholar

[5]. O.O. Emoyan, I.A. Akpoborie, E.E. Akporhonor, The oil and gas industry and the Niger Delta: implications for the environment, Journal of Applied Science and. Environmental Management 12 (2008) 29 – 37. http://www.bioline.org.br/pdf?ja08046 Search in Google Scholar

[6]. O.O. Emoyan, E.E. Akporhonor, I.A. Akpoborie, Environmental Risk assessment of River Ijana, Ekpan, Delta State, Nigeria, Journal of Chemical Speciation Bioavailability 20 (2008) 23-32. https://doi.org/10.1080/09542299.2008.1107377010.1080/09542299.2008.11073770 Search in Google Scholar

[7]. C.M.A. Iwegbue, G.O. Tesi, L.C. Overah, O.O. Emoyan, G.E. Nwajei, B.C. Martincigh, Effects of flooding on the sources, spatiotemporal characteristics and human health risks of polycyclic aromatic hydrocarbons in floodplain soils of the lower parts of the River Niger, Nigeria, Journal of Polycyclic Aromatic Compounds 40 (2020) 228-244. http:///doi.org/10.1080/10406638.2017.140332910.1080/10406638.2017.1403329 Search in Google Scholar

[8]. I.J. Keyte, A. Albinet, R.M. Harrison, On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and nitro-derivative compounds measured in road tunnel environments, Science of The Total Environment 566-567 (2016) 1131-1142. https://doi.org/10.1016/j.scitotenv.2016.05.15210.1016/j.scitotenv.2016.05.15227312273 Search in Google Scholar

[9]. X. Duan, Y. Li, Sources and Fates of BTEX in the general environment and its distribution in coastal cities of China, Journal of Environmental Science and Public Health 1 (2017) 86-106. https://www.doi.org/10.26502/jesph.961200910.26502/jesph.9612009 Search in Google Scholar

[10]. C.A. Stapleton, D.W. Haywick, M.L. Julius, L. Novoveská, J.F. Valentine, How anthropogenic activities impacted Polecat Bay near mobile, Alabama, USA: a paleoecological study and forensic investigation, Journal of Environmental. Forensics 22 (2021) 251-269. https://doi.org/10.1080/15275922.2020.183607310.1080/15275922.2020.1836073 Search in Google Scholar

[11]. J. Hu, C. Liu, Q. Guo, J. Yang, C.P. Okoli, Y. Lang, Z. Zhao, S. Li, B. Liu, G. Song, Characteristics, source and potential ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the Songhua River Basin, North East China, Environmental Science and Pollution Research International 24 (2017) 17090-17102. DOI: 10.1007/s11356-017-9057-710.1007/s11356-017-9057-728585008 Search in Google Scholar

[12]. D. Crnković, Z. Sekulić, D. Antonović, A. Marinković, S. Popović, J. Nikolić, S. Drmanić, Origins of polycyclic aromatic hydrocarbons in sediments from the Danube and Sava Rivers and their tributaries in Serbia, Polish Journal of Environmental Studies 29 (2020) 2101-2110. DOI: https://doi.org/10.15244/pjoes/11131910.15244/pjoes/111319 Search in Google Scholar

[13]. P.W.G. Liu, Y.C. Yao, J-H. Tsai, Y.-C. Hsu, L.P. Chang, K.H. Chang, Source impacts by volatile organic compounds in an industrial city of Southern Taiwan, Science of The Total Environment. 398 (2008) 154-163. https://doi.org/10.1016/j.scitotenv.2008.02.05310.1016/j.scitotenv.2008.02.05318448149 Search in Google Scholar

[14]. ESI Africa. Africa’s Power Journal. The World Bank urban air pollution. South Asian urban air quality management briefing. 2001. 2017, Note No. 7. Assessed 8th June 2020. www.esi_africa.com. ESMAP Search in Google Scholar

[15]. O.O. Emoyan, Quantification and cancer risk evaluation of polycyclic aromatic hydrocarbons in soil around selected telecom masts in Delta State Nigeria, Egyptian Journal of Chemistry 63 (2020) 433-448. https://doi.org/10.21608/ejchem.2019.17620.208110.21608/ejchem.2019.17620.2081 Search in Google Scholar

[16]. UNEP. Environmental Assessment of Ogoni land. United Nations Environment Programme (UNEP). No. DEP/1337/GE (2011) 262. Search in Google Scholar

[17]. O.O. Emoyan, Bioremediation of in-situ crude oil contaminated soil using selected organic dung, Egyptian Journal of Chemistry 63 (2020) 2827-2836. doi.org/10.21608/ejchem.2020.18048.209810.21608/ejchem.2019.17620.2081 Search in Google Scholar

[18]. D. Orazbayeva, B. Kenessov, J.A. Koziel, D. Nassyrova, N. Lyabukhova, Quantification of BTEX in soil by headspace SPME-GC-MS using combined standard addition and internal standard calibration, Agricultural and Biosystems Engineering Publications 80 (2017) 1249-1256. DOI10.1007/s10337-017-3340-010.1007/s10337-017-3340-0 Search in Google Scholar

[19]. C.M.A. Iwegbue, M.J. Ehigbor, G.O. Tesi, O. Eguavoen, B.S. Martincigh, Occurrence, sources and exposure risk of polycyclic aromatic hydrocarbons (PAHs) in street dusts from the Nigerian megacity, Lagos, Journal of Polycyclic Aromatic Compounds (2020). http:///doi.org/10.1080/10406638.2020.171602710.1080/10406638.2020.1716027 Search in Google Scholar

[20]. CCME. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Benzo [a] Pyrene. In: Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment. Winnipeg. Retreived June 2020 (2010) Canada. 235. Retreived June 2020 https://www.esdat.net/Environmental%20Standards/Canada/SOIL/rev_soil_summary_tbl_7.0_e.pdf Search in Google Scholar

[21]. O.O. Emoyan, P.O. Agbaire, E. Ohwo, G.O. Tesi Priority mono-aromatics measured in anthropogenic impacted soils from Delta, Nigeria: concentrations, origin, and human health risk, Environmental Forensics (2021). https://doi.org/10.1080/15275922.2021.189288010.1080/15275922.2021.1892880 Search in Google Scholar

[22]. S.B. Olobaniyi, J.E. Ogala, B.N. Nfor, Hydrogeochemical and bacterialogical assessment of groundwater in Agbor area, southern Nigeria, Journal of Mining and Geology 43 (2007) 79-89. https://doi.org/10.4314/jmg.v43i1.1886710.4314/jmg.v43i1.18867 Search in Google Scholar

[23]. USEPA, Regional screening levels (RSL) summary tables. Screening-levels-risks-generic-tables. Accessed on 19th November, 2020 (2020). https://www.epa.gov/risk/regional Search in Google Scholar

[24]. USEPA, Regional screening levels (RSL) summary tables. Accessed on 21 December, 2019. Screening-table-generic-tables. (2010). http://www.epa.gov/risk/risk-based- Search in Google Scholar

[25]. NYSDOH. Hopewell precision area contamination: Appendix C-NYS DOH, In: Procedure for evaluating potential health risks for contaminants of concern. New York States Department of Health (2007). https://www.health.ny.gov/environmental/investigations/hopewell/appendc.htm Search in Google Scholar

[26]. E.R. Long, D.D. MacDonald, Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems, Human and Ecological Risk Assessment 4 (1998) 1019–1039. doi.org/10.1080/1080703989128495610.1080/10807039891284956 Search in Google Scholar

[27]. E.R. Long, D.D. MacDonald, S.L. Smith, F.D. Calder, Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments, Journal of Environmental Management 19 (1995) 81–97. https://doi.org/10.1007/BF0247200610.1007/BF02472006 Search in Google Scholar

[28]. M. Radziemska, J. Fronczyk, Level and Contamination Assessment of soil along an expressway in an ecologically valuable Area in Central Poland, International Journal Environmental Resources and Public Health 12 (2015) 13372-13387. https://doi.org/10.3390/ijerph12101337210.3390/ijerph121013372462703626512684 Search in Google Scholar

[29]. G.M. Pierzynski, J.T. Sims, G.F. Vance, Soils and Environmental Quality, p. 592, 3rd Edition, Boca Raton, CRC Press, Taylor & Francis (2000). https://www.routledge.com/Soils-and-Environmental-Quality/Pierzynski-Vance-Sims/p/book/9780849316166 Search in Google Scholar

[30]. J. Harmsen, W.H. Rulkens, R.C. Sims, P.E. Rijtema, A.J. Zweers, Theory and application of land farming to remediate polycyclic aromatic hydrocarbons and mineral oil-contaminated sediments: Beneficial reuse, Journal of Environmental Quality 36 (2007) 1112-1122. https://doi.org/10.2134/jeq2006.016310.2134/jeq2006.016317596619 Search in Google Scholar

[31]. O.O. Emoyan, S.O. Akporido, P.O. Agbaire, Effects of soil pH, total organic carbon and texture on fate of polycyclic aromatic hydrocarbons (PAHs) in Soils, Global NEST Journal 20 (2018) 181-187. https://doi.org/10.30955/gnj.00227710.30955/gnj.002277 Search in Google Scholar

[32]. DPR-EGASPIN. Environmental guidelines and standard for the petroleum industry in Nigeria (revised edition. Department of Petroleum Resources, Ministry of Petroleum and Mineral Resources, Abuja Nigeria (2002) 320. https://ngfcp.dpr.gov.ng/media/1066/dprs-egaspin-2002 Search in Google Scholar

[33]. B. Maliszewska-Kordybach, Polycyclic aromatic hydrocarbons in agricultural soils in Pol &: preliminary proposals for criteria to evaluate the level of soil contamination, Applied Geochemistry 11 (1996) 121-127. DOI: 10.1016/0883-2927(95)00076-310.1016/0883-2927(95)00076-3 Search in Google Scholar

[34]. P. Baumard, H. Budzinski, P. Garrigues, H. Dizer, P.D. Hansen, Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilusedulis) from Western Baltic Sea: occurrence, bioavailability and seasonal variations, Marine Environmental Research 47 (1999) 17-47. https://doi.org/10.1016/S0141-1136(98)00105-610.1016/S0141-1136(98)00105-6 Search in Google Scholar

[35]. O.O. Emoyan, C.C. Ikechukwu, G.O. Tesi, Occurrence and sources of aliphatic hydrocarbons in anthropogenic impacted soils from petroleum tank-farms in the Niger Delta, Nigeria, Ovidius University Annals of Chemistry 31 (2020) 66-72. https://doi.org/10.2478/auoc-2020-002210.2478/auoc-2020-0022 Search in Google Scholar

[36]. J. Pinedo, R. Ibáñez, J.P.A. Lijzen, A. Irabien, Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances, Journal of Environmental Management 130 (2013) 72-79. DOI: 10.1016/j.jenvman.2013.08.04810.1016/j.jenvman.2013.08.04824064142 Search in Google Scholar

[37]. B.J. Alloway, Land contamination and reclamation. In: Arriso R.M. (ed). Understanding our environment: an introduction to environmental chemistry and pollution, pp. 200–236, 3rd Ed., Royal Society of Chemistry Press, UK (1999). https://pubs.rsc.org/en/content/ebook/978-0-85404-584-6 Search in Google Scholar

[38]. T.N. Nganje, A.E. Edet, S.J. Ekwere, Distribution of PAHs in surface soils from petroleum handling facilities in Calabar, Environmental Monitoring Assessment 130 (2007) 27-34. DOI: 10.1007/s10661-006-9453-910.1007/s10661-006-9453-917106773 Search in Google Scholar

[39]. T.N. Nganje, A.E. Edet, U.J. Ibok, E.J. Ukpabio, K.A. Ibe, P. Neji, Polycyclic aromatic hydrocarbons in surface water and soil in the vicinity of fuel-oil spillage from a tank farm distribution facility, Esuk Utan, Calabar Municipality, Nigeria, Environmental Earth Sciences 67 (2007) 81-90. DOI: 10.1007/s12665-011-1481-210.1007/s12665-011-1481-2 Search in Google Scholar

[40]. O.S. Sojinu, J.Z. Wang, O.O. Sonibare, E.Y. Zeng, Polycyclic aromatic hydrocarbons in sediments and soils from oil exploration areas of the Niger Delta, Nigeria. J. Haz. Mat. 174 2010) 641-647.DOI: 10.1016/j.jhazmat.2009.09.09910.1016/j.jhazmat.2009.09.09919833432 Search in Google Scholar

[41]. O.O. Emoyan, P.O. Agbaire, C. Otobrise, E.E. Akporhonor, Distribution pattern of polycyclic aromatic hydrocarbons (PAHs) in soils in the vicinity of fuel stations in Abraka, Nigeria, Journal Applied Science and Environmental Management. 15 (2011) 513-516. https://www.ajol.info/index.php/jasem/article/view/88775 Search in Google Scholar

[42]. J. Cai, S. Gao, L. Zhu, X. Jia, X. Zeng, Z. Yu, Occurrence and source apportionment of polycyclic aromatic hydrocarbons in soils and sediment from Hanfeng Lake, Three Gorges, China, Journal Environmental Science and Health Part A. Toxic/Hazardous Substance and Environmental Engineering 52 (2017) 1226-1232. https://doi.org/10.1080/10934529.2017.135618510.1080/10934529.2017.135618528920758 Search in Google Scholar

[43]. Y. Liu, Y. Wu, Y. Xia, T. Lei, C. Tian, X. Hou, Aliphatic and polycyclic aromatic hydrocarbons PAHs in soils of the northwest Qinling mountains: patterns, potential risk and an appraisal of the PAH ratios to infer their source, Journal Environmental Science and Health Part A. Toxic/Hazardous Substance and Environmental Engineering 52 (2017) 320-332. https://doi.org/10.1080/10934529.2016.125886510.1080/10934529.2016.125886527925506 Search in Google Scholar

[44]. A. Ekanem, E. Ikpe, I. Ekwere, Assessment of polycyclic aromatic hydrocarbons level in soils around automobile repair workshops within Eket metropolis, Akwa-Ibom State, Nigeria, International Journal of Research and Scientific Innovation 6 (2019) 102-107. https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-6-issue-1/102-107.pdf10.1007/s42452-019-0397-4 Search in Google Scholar

[45]. S. Spahr, M. Teixidó, D.L. Sedlak, R.G. Luthy, Hydrophilic trace organic contaminants in urban storm water: occurrence, toxicological relevance, and the need to enhance green storm water infrastructure: A critical review, Environmental Science: Water Research Technology 7 (2019) 36-49. https://doi.org/10.1039/C9EW00674E10.1039/C9EW00674E Search in Google Scholar

[46]. M.J. Gómez, S. Herrera, D. Solé, E. García-Calvo, A.R. Fernández-Alba, Spatio-temporal evaluation of organic contaminants and their transformation products along a river basin affected by urban, agricultural and industrial pollution, Science of The Total Environment 420 (2012) 134-145. DOI: 10.1016/j.scitotenv.2012.01.02910.1016/j.scitotenv.2012.01.029 Search in Google Scholar

[47]. R. Gioia, A.J. Akindele, S.A. Adebusoye, K.A. Asante, S. Tanabe, A. Buekens, A.J. Sasco, Polychlorinated biphenyls (PCBs) in Africa: a review of environmental levels, Environmental Science and Pollution Research International 21 (2013) 6278-6289. DOI: 10.1007/s11356-013-1739-110.1007/s11356-013-1739-1 Search in Google Scholar

[48]. R. Olawoyin, R.L. Grayson, O.T. Okareh, Eco-toxicological and epidemiological assessment of human exposure to polycyclic aromatic hydrocarbons in the Niger Delta, Nigeria, Toxicology and Environmental Health Sciences 4 (2012) 173-185. https://doi.org/10.1007/s13530-012-0133-610.1007/s13530-012-0133-6 Search in Google Scholar

[49]. C.M.A. Iwegbue, G. Obi, Distribution, sources, and health risk assessment of polycyclic aromatic hydrocarbons in dust from urban environment in the Niger Delta, Nigeria, Human and Environmental Risk Assessment An International Journal 22 (2016) 623-638. https://doi.org/10.1080/10807039.2015.110015710.1080/10807039.2015.1100157 Search in Google Scholar

[50]. H.H. Soclo, P.H. Garrigues, M. Ewald, Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) Areas, Maine Pollution Bulletin 40 (2000) 387-96. http://dx.doi.org/10.1016/S0025-326X(99)00200-310.1016/S0025-326X(99)00200-3 Search in Google Scholar

[51]. M.B. Yunker, R.W. Macdonald, R. Vingarzan, R.H. Mitchell, D. Goyette, S. Sylvestre, PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition, Organic Geochemistry 33 (2002) 489-515. https://doi.org/10.1016/S0146-6380(02)00002-510.1016/S0146-6380(02)00002-5 Search in Google Scholar

[52]. E.C. Nava-Martinez, E. Garcia-Flores, J.H. Espinoza-Gomez, F.T. Wakida, Heavy metals pollution in the soil of an irregular urban settlement built on a former dumpsite in the city of Tijuana, Mexico, Environmental Earth Sciences 66 (2011) 1239–1245. DOI: 10.1007/s12665-011-1335-y10.1007/s12665-011-1335-y Search in Google Scholar

[53]. E. Garcia-Flores, F.T. Wakida, J.H. Espinoza-Gomez, Sources of polycyclic aromatic hydrocarbons in urban storm water runoff in Tijuana, Mexico, International Journal of Environmental Research 7 (2013) 387-394. DOI: 10.22059/ijer.2013.617 Search in Google Scholar

[54]. B.M. Jerkins, A.D. Jones, S.Q. Turn, R.B. Williams, Emission factors of polycyclic aromatic hydrocarbons from biomass burning, Environmental Science Technology 30 (1996) 2462-2469. DOI: 10.1021/es950699m10.1021/es950699m Search in Google Scholar

[55]. B. Yang, N. Xue, L. Zhou, F. Li, X. Cong, B. Han, H. Li, Y. Yan, B. Liu, Risk assessment and sources of polycyclic aromatic hydrocarbons in agricultural soils of Huanghuai plain, China, Ecotoxicology and Environmental Safety 84 (2012) 304– 310. DOI: 10.1016/j.ecoenv.2012.07.02710.1016/j.ecoenv.2012.07.02722902165 Search in Google Scholar

[56]. T.T.T. Dong, B.K. Lee, Characteristics, toxicity and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea, Chemosphere 74 (2009) 1245-1253. DOI: 10.1016/j.chemosphere.2008.11.03510.1016/j.chemosphere.2008.11.03519103459 Search in Google Scholar

[57]. G.O. Tesi, J.O. Ojegu, S.O. Akporido, Chemical speciation and mobility of heavy metals in soils of refuse dumpsites in some urban towns in the Niger Delta, Ovidius University Annals of Chemistry 31 (2020) 66-72.10.2478/auoc-2020-0013 Search in Google Scholar

[58]. C.M.A. Iwegbue, G. Obi, O.O. Emoyan, E.W. Odali, F.E. Egobueze, G.O. Tesi, G.E. Nwajei, B.C. Martincigh, Characterization of metals in indoor dusts from electronic workshops, cybercafés and offices in southern Nigeria: Implications for On-Site Human Exposure, Ecotoxicology and Environmental Safety 159 (2018) 342–353. DOI: 10.1016/j.ecoenv.2018.04.07010.1016/j.ecoenv.2018.04.07029775830 Search in Google Scholar

[59]. J. Chen, H. Wu, H. Qian, Y. Gao, Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of Northwest China, Exposure and Health 9 (2017) 183-195. https://doi.org/10.1007/s12403-016-0231-910.1007/s12403-016-0231-9 Search in Google Scholar

[60]. H. Qian, J. Chen, K.W.F. Howard, Assessing groundwater pollution and potential remediation processes in a multi-layer aquifer system, Environmental Pollution 263 (2020) 114669. DOI: 10.1016/j.envpol.2020.11466910.1016/j.envpol.2020.11466933618462 Search in Google Scholar

[61]. J. Chen, H. Qian, Y. Gao, H. Wang, M. Zhang, Insights into hydrological and hydrochemical processes in response to water replenishment for lakes in arid regions, Journal of Hydrology 581 (2020) 124386. https://doi.org/10.1016/j.jhydrol.2019.12438610.1016/j.jhydrol.2019.124386 Search in Google Scholar

eISSN:
2286-038X
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Chemistry, other