Accès libre

Effects of Nitrogen Sources and Inorganic Salts on Antioxidant Activity of Goat Milk Fermented by Lactobacillus plantarum L60

À propos de cet article

Citez

Abbasi, S., Moslehishad, M. & Salami, M. (2022). Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa. International Journal of Biological Macromolecules, 213, 602-609. DOI: 10.1016/j.ijbiomac.2022.05.189.Search in Google Scholar

Acquah, C., Di Stefano, E. & Udenigwe, C. C. (2018). Role of hydrophobicity in food peptide functionality and bioactivity. Journal of Food Bioactives, 4, 88–98. DOI: 10.31665/JFB.2018.4164.Search in Google Scholar

Aguilar-Toalá, J. E., Santiago-López, L. & Peres, C. M. (2017). Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. Journal of dairy science, 100(1), 65-75. DOI: 10.3168/jds.2016-11846.Search in Google Scholar

Ashokbhai, J. K., Basaiawmoit, B. & Das, S. (2022). Antioxidative, antimicrobial and anti-inflammatory activities and release of ultra-filtered antioxidative and antimicrobial peptides during fermentation of sheep milk: In-vitro, in-silico and molecular interaction studies. Food Bioscience, 47, 101666. DOI: 10.1016/J.FBIO.2022.101666.Search in Google Scholar

Chen, H., Hui, Y. & Chen, L. (2015). Effect of probiotic Lactobacillus strains on antioxidant activity from fermented goat milk. Carpathian Journal of Food Science & Technology, 7(2), 109-114.Search in Google Scholar

Chen, L., Hui, Y. & Gao, T. (2021). Function and characterization of novel antioxidant peptides by fermentation with a wild Lactobacillus plantarum 60. LWT, 135, 110162. DOI: 10.1016/j.lwt.2020.110162.Search in Google Scholar

Chen, M., Ning, P. & Jiao, Y. (2021). Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method. Food Chemistry, 337, 128069. DOI: 10.1016/j.foodchem.2020.128069.Search in Google Scholar

Cheng, F., Chen, H. & Lei, N. (2019). Effect of prebiotics, inorganic salts and amino acids for cell envelope proteinase production from Lactobacillus plantarum LP69. Acta Scientiarum Polonorum Technologia Alimentaria, 18(3), 269-278. DOI: 10.17306/J.AFS.0656.Search in Google Scholar

Cheng, F., Chen, H. & Lei, N. (2019). Effects of Carbon and Nitrogen Sources on Activity of Cell Envelope Proteinase Produced by LP69. Acta Universitatis Cibiniensis. Series E: Food Technology, 23(1), 11-18. DOI: 10.2478/aucft-2019-0002.Search in Google Scholar

Clark, S. & García, M. B. M. (2017). A 100-year review: Advances in goat milk research. Journal of dairy science, 100(12), 10026-10044. DOI: 10.3168/jds.2017-13287.Search in Google Scholar

Dharmisthaben, P., Basaiawmoit, B. & Sakure, A. (2021). Exploring potentials of antioxidative, anti-inflammatory activities and production of bioactive peptides in lactic fermented camel milk. Food Bioscience, 44, 101404. DOI: 10.1016/J.FBIO.2021.101404.Search in Google Scholar

Ding, X., Qian, F. & Mu, G. (2023). Optimization of medium composition of Lactobacillus plantarum Y44 using Plackett–Burman and Box–Behnken designs. Preparative Biochemistry & Biotechnology, 1-9. DOI: 10.1080/10826068.2023.2166957.Search in Google Scholar

Hodgkinson, A. J., Wallace, O. A. M. & Boggs, I. (2018). Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions. Food Chemistry, 245, 275-281. DOI: 10.1016/j.foodchem.2017.10.028.Search in Google Scholar

Ji, Z. (2013). Screening and optimization of lactobacillus sp. fermenting goat milk for production ace-inhibitory peptides. Shaanxi University of Science and Technology, Xi'an.Search in Google Scholar

Jiang, H., Tong, T. & Sun, J. (2014). Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate. Food Chemistry, 154, 158-163. DOI: 10.1016/j.foodchem.2013.12.074.Search in Google Scholar

Kim, S. S., Ahn, C. B. & Moon, S. (2018). W. Purification and antioxidant activities of peptides from sea squirt (Halocynthia roretzi) protein hydrolysates using pepsin hydrolysis. Food Bioscience, 25, 128-133. DOI: 10.1016/j.fbio.2018.08.010.Search in Google Scholar

Li, M., Jiang, Y. & Zhang, X. (2019). Preparation and antioxidant activity of protein peptides by enzymatic from Hohenbuehelia serotina. Food & Machinery, 35(11), 176-181. DOI: 10.13652/j.issn.1003-5788.2019.11.035.Search in Google Scholar

Liu, N., Zhang, M. & Wang, Y. (2010). Effect of different concentrations of metal ions on the acid protease activity. Journal of Anhui Agricultural Sciences, 38(32), 18043-18044. DOI:10.13989/j.cnki.0517-6611.2010.32.022.Search in Google Scholar

Panchal, G., Hati, S. & Sakure, A. (2020). Characterization and production of novel antioxidative peptides derived from fermented goat milk by L. fermentum. LWT, 119, 108887. DOI: 10.1016/j.lwt.2019.108887.Search in Google Scholar

Ren, X., Pan, D. & Zeng, X. (2013). Effects of enzymatic hydrolysis with cell wall proteinase (cep) on structural and functional properties of casein. Modern Food Science and Technology, 29(11), 2643-2648. DOI: 10.13982/j.mfst.1673-9078.2013.11.027.Search in Google Scholar

Salami, M., Moosavi-Movahedi, A. A. & Moosavi-Movahedi, F. (2011). Biological activity of camel milk casein following enzymatic digestion. Journal of dairy research, 78(4), 471-478. DOI: 10.1017/S0022029911000628.Search in Google Scholar

Shu, G., He, Y. & Wan, H. (2017). Effects of Prebiotics on Antioxidant Activity of Goat Milk Fermented by L60. Acta Universitatis Cibiniensis. Series E: Food Technology, 21(2), 11-18. DOI: 10.1515/aucft-2017-0010.Search in Google Scholar

Singh, R., Kaushik, J. & Man, N. (2012). Comparative evaluation of selected strains of lactobacilli for the development of antioxidant activity in milk. Dairy science & technology, 92(2), 179-188. DOI: 10.1007/s13594-011-0048-z.Search in Google Scholar

Song, X., Liang, Q. & Zhang, Y. (2019). Review on the research progress of antioxidant peptides in Cheese. China Dairy Industry, 47(5), 42-45. DOI:10.3969/j.issn.1001-2230.2019.05.010.Search in Google Scholar

Unal, G., El, S. N. & Akalin, A. S. (2013). Antioxidant activity of probiotic yoghurt fortified with milk protein based ingredients. Italian Journal of Food Science, 25(1), 63-69.Search in Google Scholar

Wu, Z. (2009). Studies on producing corn peptide by germ hydrolysis zein. Heilongjiang Bayi Agricultural University, Daqing.Search in Google Scholar

Xie, J., Du, M. & Shen, M. (2019). Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food chemistry, 270, 243-250. DOI: 10.1016/j.foodchem.2018.07.103.Search in Google Scholar

Yang, J., Huang, J. & Zhu, Z. (2020). Investigation of optimal conditions for production of antioxidant peptides from duck blood plasma: response surface methodology. Poultry science, 99(12), 7159-7168. DOI: 10.1016/j.psj.2020.08.060.Search in Google Scholar

Yang, L. (2017). Study on the antioxidant peptides of products fermented from different base of goat milk and its functionalities, Northwest A & F University, Xianyang.Search in Google Scholar

Zanutto-Elgui, M. R., Vieira, J. C. S. & do Prado, D. Z. (2019). Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food chemistry, 278, 823-831. DOI: 10.1016/j.foodchem.2018.11.119.Search in Google Scholar

Zhang, C. (2016). Study on preparation of antioxidant peptides by enzymolysis of large yellow croaker (Pseudosciaena crocea ) and its properties and functional mechanism. Fujian Agriculture And Forestry University, Fuzhou.Search in Google Scholar

eISSN:
2344-150X
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Industrial Chemistry, other, Food Science and Technology