Accès libre

Phenolic profile and antioxidant activity of the selected edible flowers grown in Poland

À propos de cet article

Citez

1. Apak, R., Guclu, K., Karademir, S.E. & Ozyurek, M. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 52, 7970-7981. DOI: 10.1021/jf048741x10.1021/jf048741x Search in Google Scholar

2. Araújo, S., Matos, C., Correia, E. & Antunes, M.C. (2019). Evaluation of phytochemicals content, antioxidant activity and mineral composition of selected edible flowers. Qual. Assur. Saf. Crop. Foods.11(5), 471-478. DOI: 10.3920/QAS2018.149710.3920/QAS2018.1497 Search in Google Scholar

3. Barnum, D.W. (1997). Spectrophotometric determination of catechol, epinephrine, dopa, dopamine and other aromatic vic-diols. Anal. Chim. Acta. 89, 157-166. DOI: 10.1016/S0003-2670(01)83081-610.1016/S0003-2670(01)83081-6 Search in Google Scholar

4. Benzie, J., Iris, F.F. & Strain, J. (1999). Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method. Enzymol. 299, 15-27. DOI: 10.1016/S0076-6879(99)99005-510.1016/S0076-6879(99)99005-5 Search in Google Scholar

5. Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200. DOI: 10.1038/1811199a010.1038/1811199a0 Search in Google Scholar

6. Butnariu, M. & Coradini, C.Z. (2012). Evaluation of biologically active compounds from Calendula officinalis flowers using spectrophotometry. Chem. Cent. J. 6, 35, 2–7. DOI: 10.1186/1752-153X-6-3510.1186/1752-153X-6-35337995222540963 Search in Google Scholar

7. Chen, G.L., Chen, S.G., Xie, Y.Q., Chen, F., Zhao, Y.Y., Luo, C.X. & Gao, Y.Q. (2015). Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J. Funct. Foods 17, 243–259. DOI: 10.1016/j.jff.2015.05.02810.1016/j.jff.2015.05.028 Search in Google Scholar

8. Chen, Q., Xu, B., Huang, W., Amrouche, A.T., Maurizio, B., Simal-Gandara, J., Tundis, R., Xiao, J., Zou, L. & Lu, B. (2020). Edible flowers as functional raw materials: A review on anti-aging properties. Trends Food Sci. Technol. 106, 30–47.10.1016/j.tifs.2020.09.023 Search in Google Scholar

9. Dudek, M., Matławska, I. & Szkudlarek, M. (2006). Phenolic acids in the flowers of Althaea rosea var. nigra. Acta Pol. Pharm. 63(3), 207-21. Search in Google Scholar

10. Fernandes, L., Casal, S., Pereira, J.A., Saraivac, J.A. & Ramalhosa, A. (2017). Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 60, 38–50. DOI: 10.1016/j.jfca.2017.03.01710.1016/j.jfca.2017.03.017 Search in Google Scholar

11. Frum A. (2017). HPLC determination of polyphenols from Calendula Officinalis L. flowers. Acta Universitatis Cibiniensis Series E: Food Technology 97, XXI (2), 97-101. DOI: 10.1515/aucft-2017-002010.1515/aucft-2017-0020 Search in Google Scholar

12. Grzeszczuk, M., Wesołowska, A., Jadczak, D. & Jakubowska, B. (2011). Nutritional value of chive edible flowers. Acta Sci. Pol. Hortorum Cultus 10(2), 85-94. Search in Google Scholar

13. Halliwell, B., Gutteridge, J. & Aruoma, O. (1987). The desoxyribose method: a simple test tube assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165, 215-219. DOI: 10.1016/0003-2697(87)90222-310.1016/0003-2697(87)90222-3 Search in Google Scholar

14. Husti, A., Cantor, M., Buta, E. & Hort D. (2013). Current Trends of Using Ornamental Plants in Culinary Arts. ProEnvironment 6, 52-58. Search in Google Scholar

15. Kaisoon, O., Siriamornpun, S., Weerapreeyakul, N. & Meeso, N. (2011). Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. Foods 3, 88-99. DOI: 10.1016/j.jff.2011.03.00210.1016/j.jff.2011.03.002 Search in Google Scholar

16. Kucekova, Z., Mlcek, J., Humpolicek, P., Rop, O., Valasek, P. & Saha, P. (2011). Phenolic Compounds from Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and Their Antiproliferative Effects. Molecules 16, 9207-9217. DOI: 10.3390/molecules 1611920710.3390/molecules14020738 Search in Google Scholar

17. Kucekova, Z., Mlcek, J., Humpolicek, P. & Rop, O. (2013). Edible flowers - antioxidant activity and impact on cell viability. Cent. Eur. J. Biol. 8(10), 1023-1031. DOI: 10.2478/s11535-013-0212-y10.2478/s11535-013-0212-y Search in Google Scholar

18. Kumari, P., Ujala & Bhargava, B. (2021). Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. J. Funct. Foods 2021, 78, 104375. DOI: 10.1016/j.jff.2021.10437510.1016/j.jff.2021.104375 Search in Google Scholar

19. Li, C.D.H., Wang, L., Shu, Q., Zheng, Y., Xu, Y., Zhang, J., Zhang, J., Yang, R. & Ge, Y. (2009). Flavonoid composition and antioxidant activity of tree peony (Paeonia Section Moutan) yellow flowers. J. Agric. Food Chem. 57, 18, 8496–8503. DOI: 10.1021/jf902103b10.1021/jf902103b Search in Google Scholar

20. Mlcek, J. & Rop, O. (2011). Fresh edible flowers of ornamental plants - A new source of nutraceutical foods. Trends Food Sci. Technol. 22, 561-569. DOI: 10.1016/j.tifs.2011. 04.006 Search in Google Scholar

21. Nalewajko-Sieliwoniuk, E., Pliszko, A., Nazaruk, J., Barszczewsk, E. & Pukszta, W. (2019). Comparative analysis of phenolic compounds in four taxa of Erigeron acris s. l. (Asteraceae). Biologia 74, 1569–1577. DOI: 10.2478/s11756-019-00332-w10.2478/s11756-019-00332-w Search in Google Scholar

22. Nardini, M. & Ghiselli, A. (2004). Analytical, nutritional and clinical methods. Determination of free and bound phenolic acids in beer. Food Chem. 84, 137-143. DOI: 10.1016/S0308-8146(03)00257-710.1016/S0308-8146(03)00257-7 Search in Google Scholar

23. Navarro-González, I., González-Barrio, R., García-Valverde, V., Bautista-Ortín, A.B. & Periago, M.J. (2015). Nutritional composition and antioxidant capacity in edible flowers: characterization of phenolic compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 16(1), 805-822. DOI: 10.3390/ijms16010805.10.3390/ijms16010805430727625561232 Search in Google Scholar

24. Nowicka, P. & Wojdyło, A. (2019). Anti-hyperglycemic and anticholinergic effects of natural antioxidant contents in edible flowers. Antioxidants 8, 308. DOI: 10.3390/antiox 8080308 Search in Google Scholar

25. Piresa, T.C.S.P., Barros, L., Santos-Buelga, C. & Ferreira, I.C.F.R. (2019). Edible flowers: Emerging components in the diet. Trends Food Sci. Technol. 93, 244-258. DOI: 10.1016/j.tifs.2019.09.02010.1016/j.tifs.2019.09.020 Search in Google Scholar

26. Prieto, P., Pineda, M. & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269, 337-341. DOI: 10.1006/abio. 1999.4019 Search in Google Scholar

27. Rop, O., Mlcek, J., Jurikova T., Neugebauerova, J. & Vabkova, J. (2012). Edible Flowers - A New Promising Source of Mineral Elements in Human Nutrition. Molecules 17, 6672-6683. DOI: 10.3390/molecules1706667210.3390/molecules17066672626829222728361 Search in Google Scholar

28. Singleton, V.A. & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Vitricult. 16, 144-158. Search in Google Scholar

29. Skrajda-Brdak, M., Dąbrowski, G. & Konopka, I. (2020). Edible flowers, a source of valuable phytonutrients and their pro-healthy effects – A review. Trends in Food Sci. Technol. 103, 179-199. DOI: 10.1016/j.tifs.2020.06.01610.1016/j.tifs.2020.06.016 Search in Google Scholar

30. Stanciu, G., Rotariu, R., Popescu, A. & Tomescu, A. (2019). Phenolic and Mineral Composition of Wild Chicory Grown in Romania. Rev. Chim. 70(4), 1173-1177.10.37358/RC.19.4.7087 Search in Google Scholar

31. Utvineantu A., & Vamanu, E. (2020). In vitro Antioxidant Potential and Anti-Escherichia coli Effect of Crude Extracts from Common Edible Yellow Flower Petals. Algerian J. Nat. Prod. 8(2), 767-773. Search in Google Scholar

32. Wojciak-Kosior, M., Matysik, G. & Soczewinski, E. (2003). Investigations of phenolic acids occurring in plant components of Naran N by HPLC and HPTLC densitometric methods. Herba Polonica 49, 194-201. Search in Google Scholar

33. Xiong, L., Yang, J., Jiang, Y., Lu, B., Hu, Y., Zhou, F., Mao, S. & Shen, C. (2014). Phenolic compounds and antioxidant capacities of 10 common edible flowers from China. J. Food Sci. 79(4), 517-525. DOI: 10.1111/1750-3841.1240410.1111/1750-3841.1240424621197 Search in Google Scholar

34. Zheng, J., Meenu, M. & Xu, B. (2019). A systematic investigation on free phenolic acids and flavonoids profiles of commonly consumed edible flowers in China. J. Pharm. Biomed. Anal. 172, 268-277. DOI: 10.1016/j.jpba.2019.05.00710.1016/j.jpba.2019.05.00731078063 Search in Google Scholar

35. Żurek, N., Kapusta, I. & Cebulak T. (2020). Impact of extraction conditions on antioxidant potential of extracts of flowers, leaves and fruits of hawthorn (Crataegus × Macrocarpa l.). Food. Science. Technology. Quality. 27(2), 130-141. DOI: 10.15193/zntj/2020/123/34010.15193/zntj/2020/123/340 Search in Google Scholar

eISSN:
2344-150X
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Industrial Chemistry, other, Food Science and Technology