Accès libre

Optimisation and Modelling of Soil Pulverisation Index Using Response Surface Methodology for Disk Harrow Under Different Operational Conditions

À propos de cet article

Citez

The study aimed to determine the optimal pulverisation index of soil for disk harrow by modelling. A mathematical model was developed using a Design-Expert software and response surface methodology. Experiments were carried out in silty loamy soil with three different levels of soil moisture content of 9.25%, 17.56%, and 22.32%, operating depths of 10 cm, 15 cm, and 20 cm, and operating speeds of 3.17, 4.85, and 5.47 km·h-1. The quadratic model proposed by the Design-Expert software was statistically significant (P <0.01), with a strong correlation relationship (R2 = 0.989) between actual and predicted soil pulverisation index values. The adequacy precision achieved at 41.84 showed the models‘ ability to navigate the design space. However, statistical analysis, using the t-test and P-value, showed the actual and predicted values have no significant differences in the pulverisation index of soil. The optimal soil pulverisation index (8.61 mm) was achieved with a desirability of 1.00, at a soil moisture content of 14.43%, an operating depth of 11.64 cm, and a forward speed of 5.30 km·h-1. Model validation confirmed acceptability (R2 = 0.974) and a 99% accuracy in predicting the soil pulverisation index.

eISSN:
1338-5267
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other