Accès libre

The Influence of Soil Physico-Mechanical Properties on Plant Growth and Subsoil Water Movement

À propos de cet article

Citez

Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environment International, 2019, 132, 105078, doi:10.1016/j.envint.2019.105078. Search in Google Scholar

Lin, Y.; Ye, G.; Kuzyakov, Y.; Liu, D.; Fan, J.; Ding, W. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biology and Biochemistry, 2019, 134, 187-196, http://doi.org/10.1016/j.soilbio.2019.03.030. Search in Google Scholar

Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 2013, 33:291-309, http://doi.org/10.1007/s13593-011-0071-8. Search in Google Scholar

Pinton, R.; Varanini, Z.; Nannipieri, P. The rhizosphere: Biochemistry and organic substances at the Soil-Plant interface. Marcel Dekker, New York, 2001. Search in Google Scholar

Teixeira da Silva, R.; Fleskens, L.; van Delden, H.; van der Ploeg, M. Incorporating soil ecosystem services into urban planning: status, challenges and opportunities. Landscape Ecology, 2018, 33, 1087–1102, https://doi.org/10.1007/s10980-018-0652-x. Search in Google Scholar

Pouyat, R.V.; Day, S.D.; Brown, S.; Schwarz, K.; Shaw, R.E.; Katalin; Szlavecz, K.; Trammell, T.L.E.; Yesilonis, I.D. Urban Soils. 127-144. In: Pouyat, R.; Page-Dumroese, D.; Patel-Weynand, T.; Geiser, L. (Eds). Forest and Rangeland Soils of the United States Under Changing Conditions. Springer, Cham. 2020, https://doi.org/10.1007/978-3-030-45216-2_7. Search in Google Scholar

Kraft, N.J.B.; Godoy, O.; Levine, J.M. Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences, 2015, 112, 797-802. http://doi.org/10.1073/pnas.1413650112. Search in Google Scholar

Godfray, H.C.J.; Garnett, T. Food security and sustainable intensification. Philosophical Transactions of the Royal Society B, 2014, 369, 20120273, http://doi.org/10.1098/rstb.2012.0273. Search in Google Scholar

Strange, R.N.; Scott, P.R. Plant disease: A threat to global food security. Annual Review of Phytopathology, 2005, 43, 83-116, http://doi.org/10.1146/annurev.phyto.43.113004.133839. Search in Google Scholar

Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 2011, 108, 20260-20264, http://doi.org/. Search in Google Scholar

Taylor, J.R.N., Kini, F. Cereal Biofortification: Strategies, Challenges, and Benefits. Cereal Foods World, 2012, 57(4), 165–169. Search in Google Scholar

Poveda, K.; Steffan-Dewenter, I.; Scheu, S.; Tscharntke, T. Effects of below-and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia, 2003, 135, 601–605, doi: 10.1007/s00442-003-1228-1. Search in Google Scholar

Eviner, V.T.; Hawkes, C.V. Embracing variability in the application of plant–soil interactions to the restoration of communities and ecosystems. Restoration Ecology, 2008, 16, 713–729. Search in Google Scholar

Halpern, B.S.; Boettiger, C.; Dietze, M.C.; Gephart, J.A.; Gonzalez, P.; Grimm, N.B.; Groffman, P.M. et al. Priorities for Synthesis Research in Ecology and Environmental Science. Ecosphere, 2023, 14(1), e4342, https://doi.org/10.1002/ecs2.4342. Search in Google Scholar

Bairey, E.; Kelsic, E.D.; Kishony, R. High-order species interactions shape ecosystem diversity. Nature Communications, 2016, 7, 12285, http://doi.org/10.1038/ncomms12285. Search in Google Scholar

Kos, M.; Tuijl, M.A.; Roo, J.; Mulder, P.P.; Bezemer, T.M. Species-specific plant–soil feedback effects on above-ground plant–insect interactions. Journal of Ecology, 2015, 103, 904–914, doi: 10.1111/1365-2745.12402. Search in Google Scholar

Van der Putten, W.H.; Bardgett, R.D.; Bever, J.D.; Bezemer, T.M.; Casper, B.B.; Fukami, T. et al. Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101, 265–276, doi: 10.1111/1365-2745.12054. Search in Google Scholar

Mathieu, A.; Cournède, P.H.; Letort, V.; Barthelemy, D.; de Reffye, P. A dynamic model of plant growth with interactions between development and functional mechanisms to study plant structural plasticity related to trophic competition. Annals of Botany, 2009, 103, 1173–1186. Search in Google Scholar

Wu, L.; Le Dimet, F.X.; de Reffye, P.; Hu, B.G.; Cournède, P.H.; Kang, M.Z. An optimal control methodology for plant growth – case study of water supply problem of sunflower. Mathematics and Computers in Simulation, 2012, 82, 909–923. Search in Google Scholar

Barthélémy, D.; Caraglio, Y. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany, 2007, 99, 375–407. Search in Google Scholar

Jochem, B.E.; Letort, V.; Renton, M.; Kang, M. Computational botany: advancing plant science through functional–structural plant modelling, Annals of Botany, 2018, 121(5), 767-772, https://doi.org/10.1093/aob/mcy050. Search in Google Scholar

Cournède, P.; Letort, V.; Mathieu, A. et al. Some parameter estimation issues in functional–structural plant modelling. Mathematical Modelling of Natural Phenomena, 2011, 6, 133–159. Search in Google Scholar

Sasan, R.K., Bidochka, M.J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, 2012, 99, 101–107, doi: 10.3732/ajb.1100136. Search in Google Scholar

Pineda, A.; Zheng, S.J.; van Loon, J.J.; Pieterse, C.M.; Dicke, M. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science, 2010, 15, 507–514, doi: 10.1016/j.tplants.2010.05.007. Search in Google Scholar

Chesson, P. Updates on mechanisms of maintenance of species diversity. Journal of Ecology, 2018, 106, 1773-1794. http://doi.org/10.1111/1365-2745.13035. Search in Google Scholar

Stavrinidou, E.; Gabrielsson, R.; Gomez, E.; Crispin, X.; Nilsson, O.; Simon, D.T.; Berggren, M. Electronic plants. Science Advances, 2015, 1, e1501136. Search in Google Scholar

Hubbell, S.P. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, New Jersey, USA, 2001. Search in Google Scholar

Megías, A.G.; Müller, C. Root herbivores and detritivores shape above-ground multitrophic assemblage through plant-mediated effects. Journal of Animal Ecology, 2010, 79, 923–931. doi: 10.1111/j.1365-2656.2010.01681.x. Search in Google Scholar

Baluška, F.; Mancuso, S.; Volkmann, D.; Barlow, P.W. Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia, 2004, 59, 9-17. Search in Google Scholar

Poorter, H.; Bühler, J.; van Dusschoten, D.; Climent, J.; Postma, J.A. Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology, 2012, 39, 839–850, doi: 10.1071/FP12049. Search in Google Scholar

Hallé, F.; Oldeman, R.; Tomlinson, P. Tropical trees and forests, an architectural analysis. New York, Springer, 1978. Search in Google Scholar

Chen, Z.; Tian, Y.; Zhang, Y.; Song, B.; Li, H.; Chen, Z. Effects of root organic exudates on rhizosphere microbes and nutrient removal in the constructed wetlands. Ecological Engineering, 2016, 92, 243-250, http://doi.org/10.1016/j.ecoleng.2016.04.001. Search in Google Scholar

Yan, H.; Kang, M.Z.; De Reffye, P.; Dingkuhn, M. A dynamic, architectural plant model simulating resource-dependent growth. Annals of Botany, 2004, 93, 591–602. Search in Google Scholar

Baetz, U.; Martinoia, E. Root exudates: The hidden part of plant defense. Trends in Plant Science, 2014, 19, 90-98, http://doi.org/10.1016/j.tplants.2013.11.006. Search in Google Scholar

Department of Agriculture. Irrigation guide. National Engineering Handbook - Part 652. 1997. Website: https://directives.sc.egov.usda.gov/17837.wba. Search in Google Scholar

Malamy, J.E. Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell and Environment, 2005, 28, 67-77. DOI: 10.1111/j.1365-3040.2005.013e06.x. Search in Google Scholar

Nibau, C.; Gibbs, D.; Coates, J. Branching out in new directions: the control of root architecture by lateral root formation. New Phytologist, 2008, 179, 595-614, doi: 10.1111/j.1469-8137.2008.02472.x. Search in Google Scholar

Wu, S.; Sun, X.; Tan, Q.; Hu, Ch. Molybdenum improves water uptake via extensive root morphology, aquaporin expressions and increased ionic concentrations in wheat under drought stress. Environmental and Experimental Botany, 2018, 157, 241-249, doi:10.1016/j.envexpbot.2018.10.013. Search in Google Scholar

Xiong, P.; Zhang, Z.; Peng, X. Root and root‐derived biopore interactions in soils: A review, Journal of Plant Nutrition and Soil Science, 2022, 185(5), 643-655, doi:10.1002/jpln.202200003. Search in Google Scholar

Guhra, T.; Stolze, K.; Totsche, K.U. Pathways of biogenically excreted organic matter into soil aggregates, Soil Biology and Biochemistry, 2022, 164, 108483, doi:10.1016/j.soilbio.2021.108483. Search in Google Scholar

Morrison, F.A. Understanding Rheology, Oxford University Press, ISBN 0-19-514166-0, 2001. Search in Google Scholar

Chaminé, H.I., Pereira, A.J.S.C., Teodoro, A.C. et al. Remote sensing and GIS applications in Earth and environmental systems sciences. SN Applied Science, 2021, 3, Article 870, https://doi.org/10.1007/s42452-021-04855-3. Search in Google Scholar

Windisch, S.; Sommermann, L.; Babin, D.; Chowdhury, S.P.; Grosch, R.; Moradtalab, N.; Walker, F.; Hoglinger, B.; El-Hasan, A.; Armbruster. W. et al. Impact of Long-Term organic and mineral fertilization on rhizosphere metabolites, root–microbial interactions and plant health of lettuce. Frontiers in Microbiology, 2021, 11, Article 597745, http://doi.org/10.3389/fmicb.2020.597745. Search in Google Scholar

Huang, R.; Mcgrath, S.P.; Hirsch, P.R.; Clark, I.M.; Storkey, J.; Wu, L.; Zhou, J.; Liang, Y. Plant-microbe networks in soil are weakened by century-long use of inorganic fertilizers. Microbial Biotechnology, 2019, 12, 1464-1475. http://doi.org/10.1111/1751-7915.13487. Search in Google Scholar

Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms - a review. Soil Biology & Biochemistry, 2014, 75, 54-63, http://doi.org/10.1016/j.soilbio.2014.03.023. Search in Google Scholar

eISSN:
2603-347X
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Chemistry, other, Geosciences, Geography, Life Sciences, Physics