Accès libre

Structural characterization of an exopolysaccharide produced by Lactobacillus plantarum Ts

À propos de cet article

Citez

1. Arrage, A. A., Vasishtha, N., Sundberg, D., Bausch, G., Vincent, H. L., White, D.C., On-Line Monitoring of Antifouling and Fouling-Release Surfaces Using Bioluminescence and Fluorescence Measurements during Laminar-Flow, Journal of Industrial Microbiology, 1995, 15, 277-282.10.1007/BF01569980 Search in Google Scholar

2. Angelin, J., Kavitha, M., Exopolysaccharides from probiotic bacteria and their health potential International Journal of Biological Macromolecules 2020, 162, 853-865.10.1016/j.ijbiomac.2020.06.190730800732585269 Search in Google Scholar

3. Doychinova, K., Nadezhda, N., Model for contentive and technological integration applied in environmental education. Chemistry: Bulgarian Journal of Science Education, 2019, 28(6), 746-761. Search in Google Scholar

4. Doychinova, K. Project-based learning in a model for content and technology integration in environmental education. Natural Sciences and Advanced Technology Education, 2020, 30(4), 380-394.10.53656/nat2021-4.04 Search in Google Scholar

5. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P., Smith, F. Colorimetric method for determination of sugars and related substances, Anal. Chem, 1956, 28(3), 350-356.10.1021/ac60111a017 Search in Google Scholar

6. European Food Safety Authority EFSA, Statement by the EFSA Panel on Biological Hazards on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 12: Suitability of taxonomic units notified to EFSA until March 2020. EFSA Journal, 2020, 18 p. 6174, 10.2903/j.efsa.2020.6174.10.2903/j.efsa.2020.6174733163232760463 Search in Google Scholar

7. Glenn, R., Gibson, M.B., Roberfroid, Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 1995, 125(6), 1401–1412.10.1093/jn/125.6.14017782892 Search in Google Scholar

8. German, B., Schiffrin, E.J., Reneiro, R., Mollet, B., Pfeifer, A., Neeser, J., The development of functional foods: lessons from the gut. Trends Biotechnol, 1999, 17, 492–499.10.1016/S0167-7799(99)01380-310557163 Search in Google Scholar

9. Hongpattarakere, T., Cherntong, N., Wichienchot, S., Kolida, S., Rastall, R.A. In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydr. Polym., 2012, 87, 846-852.10.1016/j.carbpol.2011.08.08534663045 Search in Google Scholar

10. Ibryamova, S., Ismailov I., Hasanov, H., Ivanov, R., Ignatova-Ivanova, Ts., Functional Characterization of an Exopolysaccharide Produced by Lactobacillus plantarum Ts Isolated from Bulgarian Wheat and Rye Flour. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2019, 10(4), 132-138. Search in Google Scholar

11. Ibrjamova, S., Ivanov, R., Ignatova-Ivanova, Ts., Exopolisaccharides from L. fermentum Ts as corrosion inhibitors, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2018, 9(6), 366-374. IF 0.38.ISSN 0975-8585. Search in Google Scholar

12. Ignatova-Ivanova, Ts., Doychinova, K., Nescheva, D., Ivanov, R., Investigation of the anticorrosive activity of the species Lactobacillus plantarum isolated from home-made cow’s yogurt. UNITECH’ 10, Gabrovo, 2010, 3, 489-492. Search in Google Scholar

13. Ignatova-Ivanova, Ts., Ibrjmova, S., Andreeva, A., Ivanov, R., Study of biofilm formation from Lactobacillus fermentum S cultivated on different carbohydrates. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2017, 8(6), 282-289. Search in Google Scholar

14. Ignatova-Ivanova, Ts., Ibryamova, S., Ivanov, R., Exopolysaccharides from Lactobacillus plantarum Ts as Corrosion Inhibitors. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2017, 9(6), 1103-1111. Search in Google Scholar

15. Ignatova-Ivanova, Ts., Ibryamova, S., Ismailov, I., Hasanov, H., Ivanov, R., Structural characterization of an exopolysaccharide produced by Lactobacillus plantarum Ts isolated from Bulgarian wheat and rye flour. International Journal of ecology and development, 2020, 35(2), 1-12. Search in Google Scholar

16. Idrees, M., Muhammad, I., Naima, A., Zahra, R., Abid, R., Alreshidi, M., Roberts, T., Abdelgadir, A., Khalid, M. T., Farid, A., Olawale, O. A., Ghazanfar, S., Probiotics, their action modality and the use of multi-omics in metamorphosis of commensal microbiota into target-based probiotics. Front. Nutr., 16 September, Sec. Nutrition and Food Science Technology. 2022. https://doi.org/10.3389/fnut. 2022.959941. Search in Google Scholar

17. Imre, B., Pukánszky, B., Compatibilization in bio-based and biodegradable polymer blends, European Polymer Journal, 2013, 49, 1215-1233.10.1016/j.eurpolymj.2013.01.019 Search in Google Scholar

18. Kodali, V.P., Perali, R.S., Sen, R.. Purification and partial elucidation of the structure of an antioxidant carbohydrate biopolymer from the probiotic bacterium Bacillus coagulans RK-02, J. Nat. Prod., 2011, 74, 1692-1697. https://doi.org/10.1021/np1008448.10.1021/np100844821800834 Search in Google Scholar

19. Korcz, E., Varga, L., Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology, 2021, 110, 375-384.10.1016/j.tifs.2021.02.014 Search in Google Scholar

20. Korcz, E., Kerényi, Z., Varga, L., Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: Potential health benefits with special regard to cholesterol-lowering effects, Food & Function, 2018, 9, 3057-3068.10.1039/C8FO00118A29790546 Search in Google Scholar

21. Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S., Lee, Y.C. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format, Anal. Biochem, 2005, 339, 69-72.10.1016/j.ab.2004.12.00115766712 Search in Google Scholar

22. Moradali, M.F., Rehm, B.H.A., The Role of Alginate in Bacterial Biofilm Formation. In: Cohen E., Merzendorfer H. (eds) Extracellular Sugar-Based Biopolymers Matrices. Biologically-Inspired Systems, 2019, vol 12. Springer.10.1007/978-3-030-12919-4_13 Search in Google Scholar

23. Moradi, M., Guimarães, J.T., Sahin, S., Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging, Current Opinion in Food Science, 2021, 40, 33-39.10.1016/j.cofs.2020.06.001 Search in Google Scholar

24. Murdzheva, D., Petkova, N.T, Todorova, M., Vasilev, I., Ivanov, I., Denev, P. Microwave-assisted synthesis of methyl esters of alginic acids as potential drug carrier. International Journal of Pharmaceutical and Clinical Research, 2016, 8(10), 1361-1368. Search in Google Scholar

25. Petkova, N., Arabadzhieva, R., Vassilev, D., Gencheva, G., Tumbarski, Y., Ignatova-Ivanova, Ts., Ibryamova, S., Todorova, M., Koleva, M., Denev, P., Physicochemical Characterization And Antimicrobial Properties Of Inulin Acetate Obtained By Microwave-Assisted Synthesis. Journal of Renewable Materials, 2020, 8(4), 365-381. a10.32604/jrm.2020.09292 Search in Google Scholar

26. Petkova, N., Tr., Arabadzhiva, R. D., Tumbarski, Y. D., Todorova, M. M., Hambarlyiska, I. P., Ivanov, I. G., Ibryamova, S. F., Ignatova-Ivanova, Ts. V., Physicochemical Properties and Antimicrobial Activity of Acetylated Chicory Fructooligosaccharides. Philippine Journal of Science, 2021, 150(4), 633-642. b10.56899/150.03.33 Search in Google Scholar

27. Petkova, N., Arabadzhieva, R., Hambarliyska, I., Vassilev, D., Gencheva, G., Tumbarski, Y., Ignatova-Ivanova, Ts., Ibryamova, S., Koleva, M., Denev, P., Ultrasound-Assisted Synthesis of Antimicrobial Inulin and Sucrose Esters with 10-Undecylenic Acid. Biointerface Research in Applied ChemistryPlatinum, 2021, 11(4), 12055-12067. c10.33263/BRIAC114.1205512067 Search in Google Scholar

28. Priyanka, P., Arun, A., & Rekha, P. Sulfated exopolysaccharide produced by Labrenzia sp. PRIM-30, characterization and prospective applications. International Journal of Biological Macromolecules, 2014, 69, 290-295. https://doi.org/10.1016/j.ijbiomac.2014.05.054.10.1016/j.ijbiomac.2014.05.05424877645 Search in Google Scholar

29. Ruas-Madiedo, P., Medrano, M., Salazar, N., Los Reyes-Gavilán, D., Pérez, P., Abraham, A. Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxinson eukaryotic cells. Journal of Applied Microbiology, 2010, 109(6), 2079-2086.10.1111/j.1365-2672.2010.04839.x20846331 Search in Google Scholar

30. Sauer, K., Stoodley, P., Goeres, D.M. et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol, 2022, 20, 608–620.10.1038/s41579-022-00767-035922483 Search in Google Scholar

31. Stadler, R., Wei, L., Furbeth, W., Grooters, M., Kuklinski, A. Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgarison high alloyed steel: corrosion inhibition by extracellular polymeric substances (EPS). Mater Corros, 2010, 61(12), 1008–16.10.1002/maco.201005819 Search in Google Scholar

32. Wang, X., Yuan, Y., Wang, K., Zhang, D., Yang, Z., Xu, P. Deproteinization of gellan gum produced by Sphingomonas paucimobilis ATCC 31461. Biotechnol, 2007, 128, 403-407.10.1016/j.jbiotec.2006.09.01917069918 Search in Google Scholar

33. Xu, R., Shen, Q., Ding, X., Gao, W., Li, P. Chemical characterization and antioxidant activity of an exopolysaccharide fraction isolated from Bifidobacterium animalis RH. Eur. Food Res. Technol, 2010, 232, 231–240.10.1007/s00217-010-1382-8 Search in Google Scholar

34. Zhang, J., Cao, Y., Wang, J., Guo, X., Zheng, Y., Zhao, W., Mei, X., Guo, T., Yang, Z. Physicochemical characteristics and bioactivities of the exopolysaccharide and its sulphated polymer from Streptococcus thermophilus GST-6. Carbohydrate Polymers, 2016, http://dx.doi.org/10.1016/j.carbpol.03.063. Search in Google Scholar

35. Zheng, J.S., Wittouck, S., Salvetti, E., Franz, C.M.A.P., Harris, H.M.B., Mattarelli, P. et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 2782-2858.10.1099/ijsem.0.00410732293557 Search in Google Scholar

eISSN:
2603-347X
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Chemistry, other, Geosciences, Geography, Life Sciences, Physics