1. bookVolume 8 (2021): Edition 3 (November 2021)
Détails du magazine
License
Format
Magazine
eISSN
2603-347X
Première parution
15 Dec 2015
Périodicité
1 fois par an
Langues
Anglais
Accès libre

Characterization of Cr(III) interaction with kaolinite – Effect of the presence of Cr(VI)

Publié en ligne: 23 Nov 2021
Volume & Edition: Volume 8 (2021) - Edition 3 (November 2021)
Pages: 10 - 20
Détails du magazine
License
Format
Magazine
eISSN
2603-347X
Première parution
15 Dec 2015
Périodicité
1 fois par an
Langues
Anglais

[1]. Owlad, M.; Aroua, M. K.; Daud, W. A. W.; Baroutian, S., Removal of hexavalent chromium-contaminated water and wastewater: a review, Water Air Soil Pollution, 2009, 200, 59-77. Search in Google Scholar

[2] Mahmud, H.N.M. E.; Huq A.K. O.; Yahya, R., Removal of Heavy Metal Ions from Wastewater/Aqueous Solution by Polypyrrole-based Adsorbents: A Review. The Royal Society of Chemistry Adv, 2016, 1, 46-55. Search in Google Scholar

[3] Edebali, S., Kinetics Investigation of Cr(VI) Removal by Modified Perlite with Fe2O3 and MnO2 Nanomaterials. International Journal of Chemical Engineering and Applications, 2016, 7, 165-168.10.7763/IJCEA.2016.V7.564 Search in Google Scholar

[4]. Levasseur, B.; Blais, J. F.; Mercier, G., Study of the metal precipitation from decontamination leachates of minicipal wastes fly ash incinerators, Environ. Technol., 2005, 26, 421–431. Search in Google Scholar

[5]. Kousalya, G. N.; Gandhi, M. R.; Meenakshi, S., Sorption of chromium(VI) using modified forms of chitosan beads, Int J of Biol Macrom., 2010, 47, 308–315. Search in Google Scholar

[6]. Shi, T.; Wang, Z.; Liu, Y.; Jia, S.; Changming, D., Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins, J. Hazard. Mater., 2009, 161, 900–906. Search in Google Scholar

[7]. Gandhi, M. R.; Viswanathan, N.; Meenakshi, S., Adsorption mechanism of hexavalent chromium removal using Amberlite IRA 743 resin, Ion Exch. Lett., 2010, 3, 325–35. Search in Google Scholar

[8]. Ozaki, H.; Sharma, K.; Saktayuvin, W., Performance of ultra-low-pressure reserve osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters, Desalination, 2002, 144, 287–294. Search in Google Scholar

[9]. Mavrov, V.; Erwe, T.; Blocher, C.; Chmiel, H., Study of new integrated processes combining adsorption, membrane separation and flotation for heavy metal removal from wastewater, Desalination, 2003, 157, 97–104. Search in Google Scholar

[10]. Admassie, S.; Elfwing, A.; Skallberg, A.; Inganäs, O., Extracting metal ions from water with redox active biopolymer electrodes, Environ Sci-Wat Res, 2005, 1, 326–331. Search in Google Scholar

[11]. Singh, V. K.; Tiwari, P. N., Removal and Recovery of chromium(VI) from Industrial Waste Water, J Chem Technol Biot, 1997, 69, 376–382. Search in Google Scholar

[12]. Khan, T. A.; Singh, V. V., Removal of cadmium(II), lead(II), and chromium(VI) ions from aqueous solution using clay, Toxicol Environ Chem, 2010, 92, 1435–1446. Search in Google Scholar

[13]. Bhattacharyya, K. G.; Gupta, S. S., Adsorption of chromium(VI) from Water by Clays, Ind Eng Chem Res, 2006, 45, 7232–7240. Search in Google Scholar

[14]. Ghomri, F.; Lahsini, A.; Laajeb, A.; Addaou, A., The removal of heavy metal ions (Copper, Zinc, Nickel and Cobalt) by natural bentonite, Larhyss J., 2013, 12, 37–54. Search in Google Scholar

[15]. Khan, A. S.; Riaz-ur-Rehman, Khan, A. M., Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite, J. Waste Manag, 1995, 15, 271–282. Search in Google Scholar

[16]. Turan, P.; Doğan, M.; Alkan, M., Uptake of trivalent chromium ions from aqueous solutions using kaolinite, J. Hazard. Mater., 2007, 148, 56–63. Search in Google Scholar

[17]. Tahir, S. S.; Naseem, R., Removal of Cr(III) from tannery wastewater by adsorption onto bentonite clay, Sep Purif Technol, 2007, 53, 312–321. Search in Google Scholar

[18]. Milonji´c, S.K.; Ruvarac, A.L.; ˇSuˇsi´c, M.V., The heat of immersion of natural magnetite in aqueous solutions, Thermohim. Acta., 1975, 11, 261–266. Search in Google Scholar

[19].Amer, W. M.; Khalili, I. F.; Awwad, M. A., Adsorption of lead, zinc and cadmium ions on polyphosphate-modified kaolinite clay, J. Environ. Chem. Ecotoxico., 2010, 2, 001-008. Search in Google Scholar

[20].Qlihaa, A.; Dhimni, S.; Melrhaka, F.; Hajjaji, N.; Srhiri, A., Caractérisation physico-chimique d’une argile Marocaine [Physico-chemical characterization of a morrocan clay], J. Mater. Environ. Sci., 2016, 7, 1741-1750. Search in Google Scholar

[21]. Fida, H.; Guo, S.; Zhang, G., Preparation and characterization of bifunctional Ti–Fe kaolinite composite for Cr(VI) removal, J Colloid Interf Sci, 2015, 442, 30–38. Search in Google Scholar

[22]. Alkan, M.; Kalay, B.; Dogan, M.; Demirbas, O., Removal of copper ions from aqueous solutions by kaolinite and batch design, J. Hazard. Mater., 2008, 153, 867–876. Search in Google Scholar

[23]. Koppelman, M. H.; Emerson, A. B.; Dillard, J. G., Adsorbed Cr(III) on Chlorite, Illite and Kaolinite: An X-Ray photoelectron spectroscopic study, Clay Clay Miner, 1980, 28, 119–124. Search in Google Scholar

[24]. Alkan, M.; Demirbaş, O.; Doğan, M., Electrokinetic properties of kaolinite in mono- and multivalent electrolyte solutions, Micropor. Mesopor. Mat., 2005, 83, 51–59. Search in Google Scholar

[25]. Ghorbel-Abid, I.; Jrad, A.; Nahdi, K.; Trabelsi-Ayadi, M., Sorption of chromium (III) from aqueous solution using bentonitic clay, Desalination, 2009, 246, 595–604. Search in Google Scholar

[26]. Kwak, S.; Yoo, J. C.; Moon, D. H.; Baek, K., Role of clay minerals on reduction of Cr(VI), Geoderma, 2018, 312, 1–5. Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo