Accès libre

Ability of metal trace elements accumulation by Lichens, Xanthoria parietina and Ramalina farinacea, in Megres area (Setif, Algeria)

À propos de cet article

Citez

[1]. Liu, W., Xu, Z., Yang, T., Health effects of air pollution in China, International journal of environmental research and public health, 2018, 15(7), 1471. DOI:10.3390/ijerph1507147110.3390/ijerph15071471606871330002305Search in Google Scholar

[2]. Kresovich, J. K., Erdal, S., Chen, H. Y., Gann, P. H., Argos, M., Rauscher, G. H., Metallic air pollutants and breast cancer heterogeneity, Environmental research, 2019, 177, 108639. DOI:10.1016/j.envres.2019.10863910.1016/j.envres.2019.108639671751931419716Search in Google Scholar

[3]. Novák, J., Vaculovič, A., Klánová, J., Giesy, J. P., Hilscherová, K., Seasonal variation of endocrine disrupting potentials of pollutant mixtures associated with various size-fractions of inhalable air particulate matter, Environmental Pollution, 2020, 264, 114654. DOI: 10.1016/j.envpol.2020.11465410.1016/j.envpol.2020.11465432375093Search in Google Scholar

[4]. Parviainen, A., Casares-Porcel, M., Marchesi, C., Garrido, C. J., Lichens as a spatial record of metal air pollution in the industrialized city of Huelva (SW Spain), Environmental Pollution, 2019, 253, 918-929. DOI:10.1016/j.envpol.2019.07.08610.1016/j.envpol.2019.07.08631351300Search in Google Scholar

[5]. Yang, S., Liu, J., Bi, X., Ning, Y., Qiao, S., Yu, Q., Zhang, J., Risks related to heavy metal pollution in urban construction dust fall of fast-developing Chinese cities. Ecotoxicology and Environmental Safety, 2020, 197: 110628. DOI:10.1016/j.ecoenv.2020.11062810.1016/j.ecoenv.2020.11062832305823Search in Google Scholar

[6]. Manigrasso, M., Febo, A., Guglielmi, F., Ciambottini, V., Avino, P., Relevance of aerosol size spectrum analysis as support to qualitative source apportionment studies, Environ. Pollut, 2012, 170, 43-51. https://doi.org/10.1016/j.envpol.2012.06.002.10.1016/j.envpol.2012.06.00222766004Search in Google Scholar

[7]. Antonucci, A., Vitali, M., Avino, P., Manigrasso, M., Protano, C., Sensitive multiresidue method by HSSPME/GC-MS for 10 volatile organic compounds in urine matrix: a new tool for biomonitoring studies on children, Anal, Bioanal. Chem, 2016, 408, 5789-5800. https://doi.org/10.1007/s00216-016-9682-x.10.1007/s00216-016-9682-x27311952Search in Google Scholar

[8]. Agnan, Y., Séjalon-Delmas, N., Probst, A., Comparing early twentieth century and present-day atmospheric pollution in SW France: A story of lichens, Environmental Pollution, 2013, 172, 139–148. doi:10.1016/j.envpol.2012.09.00810.1016/j.envpol.2012.09.00823063614Search in Google Scholar

[9]. Augusto, S., Shukla, V., Upreti, D. K., Paoli, L., Vannini, A., Loppi, S., Nerín, C., Domeno, C., Schuhmacher, M., Biomonitoring of airborne persistent organic pollutants using lichens, Institutional Research Information System,2016, 137-175. www.novapublishers.comSearch in Google Scholar

[10]. Bargagli, R., Moss and lichen biomonitoring of atmospheric mercury: a review, Sci, Total Environ, 2016, 572, 216-231. https://doi.org/10.1016/j.scitotenv.2016.07.202.10.1016/j.scitotenv.2016.07.20227501421Search in Google Scholar

[11]. Will-Wolf, S., Jovan, S., Amacher, M. C., Lichen elemental content bioindicators for air quality in upper Midwest, USA: a model for large-scale monitoring, Ecol Indic, 2017, 78, 253–263. https://doi.org/10.1016/j.ecolind.2017.03.01710.1016/j.ecolind.2017.03.017Search in Google Scholar

[12]. Boamponsem, L. K., de Freitas, C. R., Williams, D., Source apportionment of air pollutants in the Greater Auckland Region of New Zealand using receptor models and elemental levels in the lichen, Parmotremareticulatum, Atmos Pollut Res, 2017, 8, 101-113. https://doi.org/10.1016/j.apr.2016.07.012..Search in Google Scholar

[13]. Domínguez-Morueco, N., Augusto, S., Trabalon, L., Pocurull, E., Borrull, F., Schuhmacher, M., Domingo, J.L., Nadal, M., Monitoring PAHs in the petrochemical area of Tarragona County, Spain: comparing passive air samplers with lichen transplants, Environ. Sci. Pollut. Res, 2017, 24, 11890-11900. https://doi.org/10.1007/s11356-015-5612-2.10.1007/s11356-015-5612-226493300Search in Google Scholar

[14]. Paoli, L., Pinho, P., Branquinho, C., Loppi, S., Munzi, S., The influence of growth form and substrate on lichen ecophysiological responses along an aridity gradient, Environ. Sci. Pollut. Res. Int, 2017, 24, 26206-26212. https://doi.org/10.1007/s11356-017-9361-2.10.1007/s11356-017-9361-228664492Search in Google Scholar

[15]. Adjiri, F., Ramdani, M., Lograda, T., Chalard, P., Bio monitoring of metal trace elements by epiphytic lichen in the BordjBouArreridj area, east of Algeria. Der Pharma Chemica,2018, 10(3), 1-8. https://www.derpharmachemica.com/pharma-chemica/biomonitoring-of-metal-trace-elements-byepiphytic-lichen-in-the-bordjbou-arreridj-area-east-of-algeria.pdfSearch in Google Scholar

[16]. Cecconi, E., Incerti, G., Capozzi, F., Adamo, P., Bargagli, R., Benesperi, R., Carniel, F. C., Favero-Longo, S. E., Giordano, S, Puntillo, D., Ravera, S., Spagnuolo, V., Tretiach, M., Background element content in the lichen Pseudevernia furfuracea: a comparative analysis of digestion methods, Environmental monitoring and assessment, 2019, 191(5), 260. DOI:10.1007/s10661-019-7405-410.1007/s10661-019-7405-430949767Search in Google Scholar

[17]. Klapstein, S. J., Walker, A. K., Saunders, C. H., Cameron, R. P., Murimboh, J. D., O’Driscoll, N. J., Spatial distribution of mercury and other potentially toxic elements using epiphytic lichens in Nova Scotia, Chemosphere, 2020, 241, 125064. DOI:10.1016/j.chemosphere.2019.12506410.1016/j.chemosphere.2019.12506431683434Search in Google Scholar

[18]. Kar, S.; Samal, A.C.; Maity, J. P.; Santra S. C., Diversity of epiphytic lichens and their role in sequestration of atmospheric metals, International Journal of Environmental Science and Technology, 2014, 11(4), 899–908. https://doi.org/10.1007/s13762-013-0270-810.1007/s13762-013-0270-8Search in Google Scholar

[19]. Boonpeng, C., Polyiam, W., Sriviboon, C., Sangiamdee, D., Watthana, S., Nimis, P. L., Boonpragob, K., Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrematinctorum, Environ Sci Pollut Res, 2017, 24, 12393–12404. doi: 10.1007/s11356-017-8893-9.10.1007/s11356-017-8893-928357804Search in Google Scholar

[20]. Culicov, O. A., Yurukova, L., Duliu O. G., Zinicovscaia, I., Elemental content of mosses and lichens from Livingston Island (Antarctica) as determined by instrumental neutron activation analysis (INAA), Environ SciPollut Res, 2017, 24, 5717–5732. doi: 10.1007/s11356-016-8279-410.1007/s11356-016-8279-428039634Search in Google Scholar

[21]. Kłos, A., Ziembik, Z., Rajfur, M., Dołhańczuk-Śródka, A., Bochenek, Z., Bjerke, J. W., Tømmervik, H., Zagajewski, B., Ziółkowski, D., Jerz, D., Zielińska, M., Krems, P., Godyń, P., Marciniak, M., Świsłowski, P., Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and northeastern Poland, Sci Total Environ, 2018, 627, 438–449. doi: 10.1016/j.scitotenv.2018.01.211.10.1016/j.scitotenv.2018.01.21129426166Search in Google Scholar

[22]. Ratier, A., Dron, J., Revenko, G., Austruy, A., Dauphin, C. E., Chaspoul, F., Wafo, E., Characterization of atmospheric emission sources in lichen from metal and organic contaminant patterns, Environmental Science and Pollution Research, 2018, 25(9), 8364–8376.Doi:10.1007/s11356-017-1173-x10.1007/s11356-017-1173-x29307061Search in Google Scholar

[23]. Olsen, H.B., Berthelsen, K., Andersen, H.V., Søchting, U., Xanthoria parietina as a monitor of ground-level ambient ammonia concentrations, Environmental Pollution, 2010, 158, 455-461.https://doi.org/10.1016/j.envpol.2009.08.02510.1016/j.envpol.2009.08.02519781828Search in Google Scholar

[24]. Parviainen, A., Papaslioti, E. M., Casares-Porcel, M., Garrido, C. J., Antimony as a tracer of non-exhaust traffic emissions in air pollution in Granada (S Spain) using lichen bioindicators, Environmental Pollution, 2020, 114482. ‏doi:10.1016/j.envpol.2020.11448210.1016/j.envpol.2020.114482Search in Google Scholar

[25]. Roux, C., Lichens et champignons lichénicoles d’Entrevennes (France, Alpes–de–Haute–Provence, 04), Bull. Soc. Linn. Provence, 2017, 68, 119-130. https://www.researchgate.net/publication/330089778Search in Google Scholar

[26]. Álvarez, R., Del Hoyo, A., Díaz-Rodríguez, C., Coello, A. J., Del Campo, E. M., Barreno, E., Casano, L. M., Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea thalli and its isolated microalgae, Microbial ecology, 2015, 69(3), 698-709. DOI:10.1007/s00248-014-0524-010.1007/s00248-014-0524-0Search in Google Scholar

[27]. Vannini, A., Guarnieri, M., Paoli, L., Sorbo, S., Basile, A., Loppi, S., Bioaccumulation, physiological and ultrastructural effects of glyphosate in the lichen Xanthoria parietina (L.) Th. Fr, Chemosphere, 2016, 164, 233-240. DOI: 10.1016/j.chemosphere.2016.08.05810.1016/j.chemosphere.2016.08.058Search in Google Scholar

[28]. Sujetovienė, G., Sališiūtė, J., Dagiliūtė, R., Žaltauskaitė, J., Physiological response of the bioindicatorRamalinafarinacea in relation to atmospheric deposition in an urban environment, Environmental Science and Pollution Research, 2020, 1-8. DOI:10.1007/s11356-020-08767-410.1007/s11356-020-08767-4Search in Google Scholar

[29]. Rusu, A. M., Sample preparation of lichens for elemental analysis. In monitoring with lichens – monitoring lichens. Springer,2002, 7, 305-309. https://link.springer.com/chapter/10.1007/978-94-010-0423-7_2510.1007/978-94-010-0423-7_25Search in Google Scholar

[30]. Hébrard-Labit, C., Meffray, L., Comparaison de méthodes d’analyse des éléments traces métalliques (ETM) et des hydrocarbures aromatiques polycycliques (HAP) sur les sols et les végétaux, CERTU, France, 2004, 120p. https://hal-lara.archives-ouvertes.fr/hal-02150475/documentSearch in Google Scholar

[31]. Quevauviller, P., Herzig, R., Muntau, H., Certified reference material of lichen (CRM 482) for the quality control of trace element biomonitoring, Science of the total environment, 1996, 87(2), 143-152. DOI:10.1016/0048-9697(96)05139-X10.1016/0048-9697(96)05139-XSearch in Google Scholar

[32]. Liu, H. J., Zhao, L. C., Fang, S. B., Liu, S. W., Hu, J. S., Wang, L., Wu, Q. F., Use of the lichen Xanthoria mandschurica in monitoring atmospheric elemental deposition in the Taihang Mountains, Hebei, China, Scientific reports, 2016, 6, 23456. doi: 10.1038/srep2345610.1038/srep23456483569427089945Search in Google Scholar

[33]. Cansaran-Duman, D., Study on accumulation ability of two lichen species Hypogymnia physodes and Usnea hirta at iron steel factory site, Turkey, Journal of environmental biology, 2011, 32(6), 839. ‏‏http://www.jeb.co.in/journal_issues/201111_nov11/paper_23.pdfSearch in Google Scholar

[34]. Agnan, Y., Bioaccumulation et bio indication par les lichens de la pollution atmosphérique actuelle et passée en métaux et en azote en France: sources, mécanismes et facteurs d’influence, Thèse de doctorat, École doctorale Sciences de l’univers, de l’environnement et de l’espace (Toulouse), 2013. http://www.theses.fr/2013INPT0123Search in Google Scholar

[35]. Munzi, S., Cruz, C., Maia, R., Máguas, C., Perestrello-Ramos, M. M., Branquinho, C., Intra- and inter-specific variations in chitin in lichens along a N-deposition gradient, Environmental Science and Pollution Research, 2017, 24(36), 28065–28071. doi:10.1007/s11356-017-0378-310.1007/s11356-017-0378-328994014Search in Google Scholar

[36]. Parzych, A., Astel, A., Zduńczyk, A., Surowiec, T., Evaluation of urban environment pollution based on the accumulation of macro- and trace elements in epiphytic lichens, Journal of Environmental Science and Health, 2016, Part A, 51(4), 297–308. Doi:10.1080/10934529.2015.110938710.1080/10934529.2015.110938726745547Search in Google Scholar

[37]. Bergamaschi, L., Rizzio, E., Giaveri, G., Loppi, S., Gallorini, M., Comparison between the accumulation capacity of four lichen species transplanted to a urban site, Environmental Pollution, 2007, 148(2), 468-476. DOI:10.1016/j.envpol.2006.12.00310.1016/j.envpol.2006.12.00317258850Search in Google Scholar

[38]. Garty, J., Biomonitoring atmospheric heavy metals with lichens: theory and application, Critical reviews in plant sciences, 2001, 20(4), 309-371. https://doi.org/10.1080/2001359109925410.1080/20013591099254Search in Google Scholar

[39]. Liu, H. J., Fang, S. B., Liu, S.W., Zhao, L. C., Guo, X. P., Jiang, Y. J., Wu, Q. F., Lichen elemental composition distinguishes anthropogenic emissions from dust storm inputs and differs among species: Evidence from Xilinhot, Inner Mongolia, China, Scientific Reports, 2016, 6(1). doi: 10.1038/srep3469410.1038/srep34694504815727698382Search in Google Scholar

[40]. Bozkurt, Z., Determination of airborne trace elements in an urban area using lichens as biomonitor, Environmental monitoring and assessment, 2017, 189(11), 573. DOI:10.1007/s10661-017-6275-x10.1007/s10661-017-6275-x29046969Search in Google Scholar

[41]. Alsohaimi, I. H., El-Hashemy, M. A., Al-Ruwaili, A. G., Seaf El-Nasr, T. A., Almuaikel, N. S., Assessment of Trace Elements in Urban Road Dust of a City in a Border Province Concerning Their Levels, Sources, and Related Health Risks, Archives of Environmental Contamination and Toxicology, 2020, 1-16. DOI:10.1007/s00244-020-00737-810.1007/s00244-020-00737-832342127Search in Google Scholar

[42]. Agarwal, A. K., Gupta, T., Kothari, A., Particulate emissions from biodiesel vs diesel fuelled compression ignition engine. Renewable and Sustainable, Energy Reviews, 2011, 15(6), 3278-3300. https://doi.org/10.1016/j.rser.2011.04.00210.1016/j.rser.2011.04.002Search in Google Scholar

[43]. Shukla, P. C., Gupta, T., Labhsetwar, N. K., Agarwal, A. K., Trace metals and ions in particulates emitted by biodiesel fuelled engine, Fuel, 2017, 188, 603-609. https://doi.org/10.1016/j.fuel.2016.10.05910.1016/j.fuel.2016.10.059Search in Google Scholar

[44]. Liu, X., Liang, Y., Guo, J., Heavy metal pollution in Nanchang City and its health implication on traffic policemen, Environmental Science and Pollution Research, 2019, 26(18), 17885-17890. doi:10.1007/s11356-017-0289-310.1007/s11356-017-0289-328956264Search in Google Scholar

[45]. BozdoganSert, E., Turkmen, M., Cetin, M., Heavy metal accumulation in rosemary leaves and stems exposed to traffic-related pollution near Adana-İskenderun Highway (Hatay, Turkey), Environmental Monitoring and Assessment, 2019, 191(9). doi:10.1007/s10661-019-7714-7.10.1007/s10661-019-7714-731399836Search in Google Scholar

[46]. Coufalík, P., Matoušek, T., Křůmal, K., Vojtíšek-Lom, M., Beránek, V., Mikuška, P., Content of metals in emissions from gasoline, diesel, and alternative mixed biofuels, Environmental Science and Pollution Research, 2019, 26(28), 29012-29019. doi: 10.1007/s11356-019-06144-4.10.1007/s11356-019-06144-431388949Search in Google Scholar

[47]. Hu, R., Yan, Y., Zhou, X., Wang, Y., Fang, Y., Monitoring heavy metal contents with Sphagnum junghuhnianum moss bags in relation to traffic volume in Wuxi, China, International journal of environmental research and public health, 2018, 15(2), 374. DOI:10.3390/ijerph1502037410.3390/ijerph15020374585844329470433Search in Google Scholar

[48]. Rico, A., Pollutions et pratiques agricoles. Deux concepts: dose journalière admissible et chimio défense, Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie, 2000, 323(5), 435-440. https://doi.org/10.1016/S0764-4469(00)00152-910.1016/S0764-4469(00)00152-9Search in Google Scholar

[49]. Pascaud, G., Leveque, T.; Soubrand, M.; Boussen, S.; Joussein, E.; Dumat, C., Environmental and Health Risk Assessment of Pb, Zn, As and Sb in Soccer Field Soils and Sediments from Mine Tailings: Solid Speciation and Bioaccessibility, Environ. Environ. Sci. Pollut. Res, 2014, 21, 4254–4264. DOI: 10.1007/s11356-013-2297-2.10.1007/s11356-013-2297-224306721Search in Google Scholar

[50]. Nguyen Van, T., Ozaki, A., Nguyen Tho, H., Nguyen Duc, A., Tran Thi, Y., Kurosawa, K., Arsenic and heavy metal contamination in soils under different land use in an estuary in Northern Vietnam, International journal of environmental research and public health, 2016, 13(11), 1091.‏ DOI:10.3390/ijerph1311109110.3390/ijerph13111091512930127827965Search in Google Scholar

[51]. Protano, C., Guidotti, M., Owczarek, M., Fantozzi, L., Blasi, G., Vitali, M., Polycyclic aromatic hydrocarbons and metals in transplanted lichen (Pseudovernia furfuracea) at sites adjacent to a solid-waste landfill in central Italy, Archives of environmental contamination and toxicology, 2014, 66(4), 471-481. https://doi.org/10.1007/s00244-013-9965-610.1007/s00244-013-9965-624258876Search in Google Scholar

[52]. Zaltauskaite, J., Vaitonyte, I., Toxicological assessment of closed municipal solid-waste landfill impact to the environment. Environ. Res. Eng. Manage, 2016, 72, 8–16. DOI: http://dx.doi.org/10.5755/j01.erem.72.4.1655510.5755/j01.erem.72.4.16555Search in Google Scholar

[53]. Moody, C. M., Townsend, T. G., A comparison of landfill leachates based on waste composition, Waste Manage, 2017, 63, 267–274. https://doi.org/10.1016/j.wasman.2016.09.02010.1016/j.wasman.2016.09.02027742232Search in Google Scholar

[54]. Adelopo, A. O., Haris, P. I., Alo, B. I., Huddersman, K., Jenkins, R. O., Multivariate analysis of the effects of age, particle size and landfill depth on heavy metals pollution content of closed and active landfill precursors, Waste Manage, 2018, 78, 227–237. https://doi.org/10.1016/j.wasman.2018.05.04010.1016/j.wasman.2018.05.04032559908Search in Google Scholar

[55]. Taylor, D. M., Chow, F. K., Delkash, M., Imhoff, P. T., Atmospheric modeling to assess wind dependence in tracer dilution method measurements of landfill methane emissions, Waste Manage, 2018, 73, 197–209. https://doi.org/10.1016/j.wasman.2017.10.03610.1016/j.wasman.2017.10.03629103898Search in Google Scholar

[56]. Koshy, L., Jones, T., Bérubé, K., Characterization and bioreactivity of respirable airborne particles from a municipal landfill, Biomarkers, 2009, 14, 49–53. https://doi.org/10.1080/1354750090296535110.1080/1354750090296535119604059Search in Google Scholar

[57]. Paoli, L., Grassi, A., Vannini, A., Maslanˇáková, I., Bil’ová, I., Bacˇkor, M., Corsini, A., Loppi, S., Epiphytic lichens as indicators of environmental quality around a municipal solid waste landfill (C Italy), Waste Management, 2015, 42, 67–73. https://doi.org/10.1016/j.wasman.2015.04.03310.1016/j.wasman.2015.04.03325987289Search in Google Scholar

[58]. Chaabia, R., Bounouala, M., Benselhoub, A., Kharytonov, M., Anini iron ore deposit: mineralogy, wet magnetic separation enrichment and metallurgical use, Metallurgical & Mining Industry, 2015, 7(7), 364-370. https://www.researchgate.net/publication/283105370_Anini_iron_ore_deposit_Mineralogywet_magnetic_separation_enrichment_and_metallurgical_useSearch in Google Scholar

[59]. Rimondi, V., Benesperi, R., Beutel, M. W., Chiarantini, L., Costagliola, P., Lattanzi, P., Morelli, G., Monitoring of Airborne Mercury: Comparison of Different Techniques in the Monte Amiata District, Southern Tuscanyand Italy, International Journal of Environmental Research and Public Health, 2020, 17(7), 2353. Doi:10.3390/ijerph1707235310.3390/ijerph17072353717783932244315Search in Google Scholar

[60]. Gür, F., Yaprak, G. U. N. S. E. L. İ., Biomonitoring of metals in the vicinity of Soma coal-fired power plant in western Anatolia, Turkey using the epiphytic lichen, Xanthoriaparietina, Journal of Environmental Science and Health, 2011, Part A, 46(13), 1503-1511. DOI:10.1080/10978526.2011.60907510.1080/10978526.2011.60907521992698Search in Google Scholar

[61]. Titos, G., Lyamani, H., Pandolfi, M., Alastuey, A., Alados-Arboledas, L., Identification of fine (PM1) and coarse (PM10-1) sources of particulate matter in an urban environment, Atmospheric Environment, 2014, 89, 593-602. https://doi.org/10.1016/j.atmosenv.2014.03.00110.1016/j.atmosenv.2014.03.001Search in Google Scholar

[62]. Balabanova, B., Stafilov, T., Šajn, R., Andonovska, K. B., Quantitative assessment of metal elements using moss species as biomonitors in downwind area of lead-zinc mine, Journal of Environmental Science and Health, 2016, Part A, 52(3), 290–301. doi:10.1080/10934529.2016.125340310.1080/10934529.2016.125340327911670Search in Google Scholar

eISSN:
2367-5144
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Chemistry, other, Geosciences, Geography, Life Sciences, Physics