1. bookVolume 7 (2020): Edition 3 (November 2020)
Détails du magazine
License
Format
Magazine
eISSN
2603-347X
Première parution
15 Dec 2015
Périodicité
1 fois par an
Langues
Anglais
Accès libre

FTIR characterization of Sahara honey and propolis and evaluation of its anticandidal potentials

Publié en ligne: 08 Dec 2020
Volume & Edition: Volume 7 (2020) - Edition 3 (November 2020)
Pages: 46 - 57
Détails du magazine
License
Format
Magazine
eISSN
2603-347X
Première parution
15 Dec 2015
Périodicité
1 fois par an
Langues
Anglais

[1] Singha, P.; Locklin, J.; Handaa, H., A Review of the Recent Advances in Antimicrobial Coatings for Urinary Catheters. Acta Biomater, 2017, 50, 20–40.Search in Google Scholar

[2] Assadi, F., Strategies for Preventing Catheter-associated Urinary Tract Infections. Int. J. Prev. Med., 2018, 9, 50.10.4103/ijpvm.IJPVM_299_17Search in Google Scholar

[3] Danese, P.N., Antibiofilm Approaches: Prevention of Catheter Colonization. Chemical Biology, 2002, 9(8), 873-880.10.1016/S1074-5521(02)00192-8Search in Google Scholar

[4] Crnich, C.; Safdar, N.; Maki, D., Infections of implanted medical devices R Eighth Edition, D Finch, R Greenwood, Norby, R Whitley (Eds.), Antibiotics and Chemotherapy, Harcourt Publishers, London, 2001.Search in Google Scholar

[5] Luna, J.; Masdeu, G.; Perez, M.; Claramonte, R.; Forcadell, I.; Barrachina, F.; et al., Clinical trial evaluating a new hub device designed to prevent catheter- related sepsis Eur. J. Clin. Microbiol. Infect. Dis., 2000, 19, 655-662.Search in Google Scholar

[6] Darouiche, R.O.; Raad, I.I.; Heard, S.O.; Thornby, J.I.; Wenker, O.C.; Gabrielli, A.; et al., A comparison of two antimicrobial-impregnated central venous catheters Catheter Study Group. N. Engl. J. Med., 1999, 340, 1-8.Search in Google Scholar

[7] Ahmed, M.; Noureddine, D.; Saad, A.; Abdelmelek, M.; Abdelkader, B., Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp. Asian Pac. J. Trop. Biomed., 2012, 2, 554–557.Search in Google Scholar

[8] Moghim, H.; Taghipoor, S.; Shahinfard, N.; Kheiri, S.; Khabbazi, H., Comparative study on the antifungal activity of hydroalcoholic extract of Iranian propolis and royal jelly against rhizopus oryzae. J Herbmed. Pharmacol., 2015, 4, 82–92.Search in Google Scholar

[9] Aissat, S.; Ahmed, M.; Djebli, N., Propolis-Sahara honeys preparation exhibits antibacterial and anti-biofilm activity against bacterial biofilms formed on urinary catheters. Asian Pacific Journal of Tropical Disease, 2016, 6(11), 873–877.10.1016/S2222-1808(16)61149-0Search in Google Scholar

[10] White, J.W.; Subers, M.H.; Schepartz, A.I., The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim. Biophysiol. Acta, 1963, 73, 57–70.Search in Google Scholar

[11] Ahmed, M.; Noureddine, D.; Hammoudi, S.; Aissat, S.; Akila, B.; Hemida, Houari, Additive potential of ginger starch on antifungal potency of honey against Candida albicans. Asia Pacific J Trop Biomed, 2012, 2, 253-255.Search in Google Scholar

[12] Akujobi, C.O.; Njoku, H.O., Bioassay for the determination of microbial sensitivity to Nigerian honey. Global J. Pharmacol., 2010, 4(1), 36-40.Search in Google Scholar

[13] Kasprzyk, J.; Depciuch, D.; Grabek-Lejko, M.; Wojtan, P., FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey. Food Control, 2018, 84, 33-40.Search in Google Scholar

[14] Gallardo-Velázquez, T.; Osorio-Revilla, G.; Loa, M.Z.; Rivera-Espinoza, Y., Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys. Food Res Int. 2009, 42, 313–3318.Search in Google Scholar

[15] Sivakesava, S.; Irudayaraj, J., Prediction of inverted cane sugar adulteration of honey by Fourier transform infrared spectroscopy. J. Food Sci., 2001, 66, 972–978.10.1111/j.1365-2621.2001.tb08221.xSearch in Google Scholar

[16] Lichtenberg-Kraag, B.; Hedtke, C.; Bienefeld, K., Infrared Spectroscopy in routine quality analysis of honey. Apidologie, 2002, 33, 327–337.Search in Google Scholar

[17] Cai, S.; Singh, R.B., A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods. Biochemistry, 2004, 43, 2541–2549.10.1021/bi030149ySearch in Google Scholar

[18] Stuart, B., Biological applications of infrared spectroscopy. Chichester, UK: ACOL Series, Wiley, 1997.Search in Google Scholar

[19] Philip, D., Honey mediated green synthesis of gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 73(4), 650–653.10.1016/j.saa.2009.03.007Search in Google Scholar

[20] Tewari, J; Irudayaraj, J., Quantification of saccharides in multiple floral honeys using transform infrared micro attenuated total reflectance spectroscopy. J. Agric. Food Chem., 2004, 52, 3237–3243.10.1021/jf035176+Search in Google Scholar

[21] Tewari, J.C.; Irudayaraj, J.M.K., Floral classification of honey using midinfrared spectroscopy and surface acoustic wave based z-Nose sensor. J. Agric. Food Chem., 2005, 53, 6955–6966.Search in Google Scholar

[22] Subari, N.; Saleh, J.M.; Shakaff, A.Y.M.; Zakaria, A., A hybrid sensing approach for pure and adulterated honey classification. Sensors, 2012, 12, 14022–14040.Search in Google Scholar

[23] Mathlouthi, M.; Koenig, J.L., Vibrational spectra of carbohydrates. Adv. Carbohydr. Chem. Biochem., 1986, 44, 7–89.10.1016/S0065-2318(08)60077-3Search in Google Scholar

[24] Kelly, J.F.D.; Downey, G.; Fouratier, V., Initial study of honey adulteration by sugar solutions using mid-infrared (MIR) spectroscopy and chemometrics. J. Agric. Food Chem., 2004, 52, 33–39.Search in Google Scholar

[25] Masek, A.; Chrzescijanska, E.; Kosmalska, A.; Zaborski, M., Characteristics of compounds in hops using cyclic voltammetry, UV–VIS, FTIR and GC–MS analysis. Food Chem., 2014, 156, 353–361.Search in Google Scholar

[26] Staniszewska, M., Virulence Factors in Candida species. Current Protein & Peptide Science, 2020, 21 (3), 10.2174/1389203720666190722152415.10.2174/138920372066619072215241531544690Search in Google Scholar

[27] Shin, D.S.; Bin Eom, Y., Zerumbone inhibits Candida albicans biofilm formation and hyphal growth. Can J Microbiol, 2020, 65(10), 713-721, https://doi.org/10.1139/cjm-2019-0155.10.1139/cjm-2019-015531158320Search in Google Scholar

[28] Manoharan, R.K.;Lee, J.H.; Kim, Y.G.; Kim, S.I.; Le, J., Inhibitory effects of the essential oils -longipinene and linalool on biofilm formation and hyphal growth of Candida albicans. Biofouling. 2017b, 33(2), 143–155, doi:10.1080/08927014.2017 1280731.Search in Google Scholar

[29] Mutlu Sariguzel, F.; Berk, E.; Koc, A.N.; Sav, H.; Demir, G., Antifungal activity of propolis against yeasts isolated from blood culture: In vitro evaluation. J. Clin. Lab. Anal., 2016, 30, 513–516.Search in Google Scholar

[30] Alvarez-Suarez, J.M Giampieri, F.; Battino, M., Honey as a source of dietary antioxidants: Structures, bioavailability and evidence of protective effects against human chronic diseases. Curr. Med. Chem., 2013, 20, 621–638.Search in Google Scholar

[31] Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P., Honey for nutrition and health: A review. Am. J. Coll. Nutr., 2008, 27, 677–689.Search in Google Scholar

[32] Hau-Yama, N.E.; Magaña-Ortiz, D.; Oliva, A. I.; Ortiz-Vázquez,E. (2020) Antifungal activity of honey from stingless bee Melipona beecheii against Candida albicans, Journal of Apicultural Research, 2020, 59(1), 12-18, doi: 10.1080/00218839.2019.1665247.10.1080/00218839.2019.1665247Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo