Accès libre

Cellular Apoptosis, Mitochondrial Swelling, Permeability and Cytochrome-C Level After (Fe3o4)-Nps Nanoparticles Exposure and Protective Role of Diferuloylmethane in Rats Liver

À propos de cet article

Citez

[1] Wickline, S. A.; Lanza, G.M., Nanotechnology for molecular imaging and targeted therapy. Circulation, 2003, 107, 1092–1095.10.1161/01.CIR.0000059651.17045.77Search in Google Scholar

[2] Lanza, GM; Abendschein, DR; Yu, X; Winter, PM; Karukstis, KK; Scott, MJ; Fuhrhop, RW; Scherrer, DE; Wickline, SA, Molecular imaging and targeted drug delivery with a novel, ligand-directed paramagnetic nanoparticle technology. Acad. Radiol., 2002, 9, S330–S331.10.1016/S1076-6332(03)80220-9Search in Google Scholar

[3] Balasubramanyam, A.; Sailaja, N.; Mahboob, M; Rahman, MF; Hussain, SM; Grover, P., In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagensis, 2009, 24 (3), 245–251.10.1093/mutage/gep00319237533Search in Google Scholar

[5] Paunovic, J.; Vucevic, D.; Radosavljevic, T.; Pantic, S.; Nikolovski, D.; Dugalic, S.; Pantic, I., Effects of metallic nanoparticles on physiological liver functions. Rev. Adv. Mater. Sci., 2017, 49, 123-127.Search in Google Scholar

[6] Brown, JS; Zeman, KL; Bennett, WD, Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med., 2002, 166, 1240-1247.10.1164/rccm.200205-399OC12403694Search in Google Scholar

[7] Tin-Tin-Win-Shwe, Mitsushima, D.; Yamamoto, S.; Fukushima, A.; Funabashi, T.; Kobayashi, T.; Fujimaki, H., Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure. Toxicol Appl Pharmacol., 2008, 226, 192–198.10.1016/j.taap.2007.09.009Search in Google Scholar

[8] Naqvi, S.; Samim, M.; Abdin, M.; Ahmed, F.J.; Maitra, A.; Prashant, C.; Dinda, A.K., Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine, 2010, 5, 983–989.10.2147/IJN.S13244Search in Google Scholar

[9] Häfeli, UO; Riffle, JS; Harris-Shekhawat, L; Carmichael-Baranauskas, A; Mark, F; Dailey, JP; Bardenstein, D., Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm., 2009, 6(5), 1417–1428.10.1021/mp900083m19445482Search in Google Scholar

[10] Naghavi, N.; Ghoddusi, J.; Sadeghnia, H.R.; Asadpour, E.; Asgary, S., Genotoxicity and cytotoxicity of mineral trioxide aggregate and calcium enriched mixture cements on L929 mouse fibroblast cells. Dent. Mater. J., 2014, 33(1), 64–69.10.4012/dmj.2013-12324492114Search in Google Scholar

[11] Mahmoudi, M.; Simchi, A.; Imani, M., Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. J Phys Chem C., 2009, 113(22), 9573-9580.10.1021/jp9001516Search in Google Scholar

[12] Hong, SC; Lee, JH; Lee, J; Kim, HY; Park, JY; Cho, J; Lee, J; Han, DW, Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups. Int J Nanomedicine, 2011, 6, 3219-3231.10.2147/IJN.S26355325426622238510Search in Google Scholar

[13] Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Möller, L., Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol, 2008, 21(9), 1726-1732.10.1021/tx800064j18710264Search in Google Scholar

[14] Farombi, EO; Shrotriya, S; Na, HK; Kim, SH; Surh, YJ., Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol, 2008, 46, 1279-1287.10.1016/j.fct.2007.09.09518006204Search in Google Scholar

[15] Nabavi, S.F.; Daglia, M.; Moghaddam, A.H.; Habtemariam, S.; Nabavi, S.M., Curcumin and liver disease: from chemistry to medicine. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 62-77.10.1111/1541-4337.12047Search in Google Scholar

[16] Aggarwal, B.B.; Harikumar, K.B., Potential therapeutic effects of curcumin, the anti-inflamatory agent. Against neurodegenerative diseases. Int J Biochem cell Biol, 2009, 41(1), 40-59.10.1016/j.biocel.2008.06.010263780818662800Search in Google Scholar

[17] Cole, G.M.; Teter, B.; Frautschy, S., Neuroprotective effects of curcumin in: the molecular targets and therapeutic uses of curcumin in heath and disease. Adv Exp Med Biol, 2007, 595, 197-212.10.1007/978-0-387-46401-5_8Search in Google Scholar

[18] Hutchison, TA; Shahan, DR; Anderson, ML, Drugdex System. Englewood, CO; Micromedex Inc. Expires, 2000.Search in Google Scholar

[19] Tice, S.A.; Parry, D., Medications that need hepatic Monitoring. Hospital Pharmacy, 2001, 36(4), 456-464.10.1177/001857870103600417Search in Google Scholar

[20] Chen, J; Dong, X; Zhao, J; Tang, G., In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitoneal injection. J Appl Toxicol, 2009, 29(4), 330–337.10.1002/jat.141419156710Search in Google Scholar

[21] Jacobs, JJ; Skipor, AK; Black, J; Urban, Rm; Galante, JO, Release and excretion of metal in patients who have a total hip replacement component made of titanium base alloys. J. Bone Joint. Surg. Am., 1991, 73(10), 1475-1486.10.2106/00004623-199173100-00005Search in Google Scholar

[22] Kim, H.J.; Jang, Y.P., Direct analysis of curcumin in turmeric by DART-MS. Phytochem. Anal., 2009, 10, 1002-1136.Search in Google Scholar

[23] Somchit, MN et al., Hepatoprotective effects of Curcuma longa rhizomes in paracetamol-induced liver damage in rats. Proceedings of the Regional Symposium on Environment and Natural Resources. 2002, 698-702.Search in Google Scholar

[24] Fu, Y; Zheng, S.; Lin, J.; Ryerse, J.; Chen, A., Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Mol. Pharmacol., 2008, 73(2), 399-409.10.1124/mol.107.03981818006644Search in Google Scholar

[25] Johnston, HJ, Hutchison, GR; Christensen, FM; Peters, S.; Hankin, S.; Stone, V., Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol, 2009, 6, 33.10.1186/1743-8977-6-33280460820017923Search in Google Scholar

[26] Li, PF; Dietz, R.; von Harsdorf, R., Differential effect of hydrogen peroxide and superoxide anion on apoptosis and proliferation of vascular smooth muscle cells. Circulation, 1997, 96, 3602-3609.10.1161/01.CIR.96.10.3602Search in Google Scholar

[27] Armstrong, J.S.; Steinauer, K.K.; Hornung, B.; Irish, J.M.; Lecane, P.; Birrell, G.W.; Peehl, D.M.; Knox, S.J., Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ, 2002, 9, 252-263.10.1038/sj.cdd.4400959Search in Google Scholar

[28] Mishra, R.K.; Singh, S.K., Reversible antifertility effect of aqueous rhizome extract of Curcuma longa L. in male laboratory mice. Contraception, 2009, 79, 479-487.10.1016/j.contraception.2009.01.001Search in Google Scholar

[29] Fadila, K; Houria, D; Rachid, R; Reda, DM., Cellular response of pollution biondicator model (Ramalina farinacea) following treatment with fertilizer (NPKs). Am-Eurasian J Toxicol Sci, 2009, 1 (2), 69-73.Search in Google Scholar

[30] Arora, S; Jain, J; Rajwade, JM; Paknikar, KM, Cellular responses induced by silver nanoparticules: in vitro studies. Toxicol Lett, 2008, 179, 93-100.10.1016/j.toxlet.2008.04.00918508209Search in Google Scholar

[31] Ferkas, J; Christian, P; Gallego-Urrea, JA; Roos, N; Hassellöv, M; Tollefsen, KE; Thomas, KV, Uptake and effects of manufactures silver nanoparticules in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol, 2011, 101, 117-125.10.1016/j.aquatox.2010.09.01020952077Search in Google Scholar

[32] Dinkova-Kostova, A.T; Talalay, P., Direct and indirect antioxidant properties of inducers of cytoprotective proteins, Mol Nutr Food Res, 2008, 52, Suppl. 1, 128-138.10.1002/mnfr.20070019518327872Search in Google Scholar

[33] Reddy, ACP; Lokesh, BR, Studies on the inhibitory effects of curcumin and euganol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Biochem, 1994, 137, 1-8.10.1007/BF009260337845373Search in Google Scholar

[34] Somparn, P; Phisalaphong, C; Nakornchai, S; Unchern, S; Morales, NP, Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull, 2007, 30(1), 74-78.10.1248/bpb.30.74Search in Google Scholar

[35] Motaghinejad, M.; Karimian, M.; Motaghinejad, O.; Shabab, B.; Yazdani, I.; Fatima, S, Protective effect of various dosage of Curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmacol Rep, 2015, 67(2), 230-235.10.1016/j.pharep.2014.09.006Search in Google Scholar

[36] Afaq, F; Abidi, P; Matin, R; Rahman, Q., Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide. J Appl Toxicol, 1998, 18(5), 307-312.10.1002/(SICI)1099-1263(1998090)18:5<307::AID-JAT508>3.0.CO;2-KSearch in Google Scholar

[37] Rouabhi, R.; Gasmi, S.; Boussekine, S.; Kebieche, M., Hepatic Oxidative Stress Induced by Zinc and Opposite Effect of Selenium in Oryctolagus cuniculus. J. Environ. Anal. Toxicol., 2015, 5, 289.10.4172/2161-0525.1000289Search in Google Scholar

[38] Sharma, V.; Sharma, C.; Paliwal, R.; Sharma, S., Protective Potential of Curcuma longa and Curcumin on Aflatoxin B Induced Hepatotoxicity in Swiss Albino Mice. Asian J. Pharm. Hea. Sci., 2011, 1, 116-122.Search in Google Scholar

[39] Lee, CP; Shih, PH; Hsu, CL; Yen, GC, Hepatoprotection of tea seed oil (Camellia oleifera Abel.) against CCl4-induced oxidative damage in rats. Food Chem Toxicol, 2007, 45(6), 888–895.10.1016/j.fct.2006.11.007Search in Google Scholar

[40] Henine Sara; Rouabhi Rachid; Gasmi Salim; Amrouche Aml; Abide Amna; Salmi Aya; Toualbia Nadjiba; Taib Chahinez; Bouteraa Zina; Chenikher Hajer; Boussekine Samira; Kebieche Mohamed; Aouimeur Mariem; Djabri Belgacem, Oxidative stress status, caspase-3, stromal enzymes and mitochondrial respiration and swelling of Paramecium caudatum in responding to the toxicity of Fe3O4 nanoparticles. Toxicology and Environmental Health Sciences, 2016, 8 (2), 161-167.10.1007/s13530-016-0273-1Search in Google Scholar

[41] Balogun, E.; Hoque, M.; Gong, P.; Killeen, E.; Green, CJ.; Foresti, R.; Alam, J.; Motterlini, R., Curcumin activates the heme oxygenase-I gene via regulation of NrF2 and the antioxidant responsive element. Biochem J., 2003, 371, 887-895.10.1042/bj20021619Search in Google Scholar

[42] Cho, HY; Jedlicka, AE; Reddy, SP; Kensler, TW; Yamamoto, M; Zhang, LY; Kleeberger, SR, Role of NrF2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol, 2002, 26, 175-182.10.1165/ajrcmb.26.2.4501Search in Google Scholar

[43] Calabrese, V.; Scapagnini, G.; Ravagna, A.; Fariello, RG, Giuffrida Stella, AM; Abraham, NG, Regional distribution of heme oxygenase, HSP70, and glutathione in brain: relevance for endogenous oxidant/antioxidant balance and stress tolerance. J Neurosci Res, 2002, 68(1), 65-75.10.1002/jnr.10177Search in Google Scholar

[44] Bradford, M., A rapid and sensitive method for the quantities of microgram quantities of protein utilizing the principle of protein binding. Anal. Biochem., 1976, 72, 248-254.10.1016/0003-2697(76)90527-3Search in Google Scholar

[45] Kristal, B.S.; Park, B.K.; Yu, B.P., 4–hydroxynonénal est un puissant inducteur de la transition de perméabilité mitochondriale. J. Biol. Chem., 1996, 271, 6033–6038.10.1074/jbc.271.11.6033Search in Google Scholar

[46] Weckbker, G.; Cory, J.G., Ribonucleotide reductase activity and growth of Glutathoine depleted mouse leukemia L1210 cells in vitro. Cancer Lett, 1988, 40, 257-264.10.1016/0304-3835(88)90084-5Search in Google Scholar

[47] Esterbaer, H.; Gebicki, J.; Puhl, H.; Jungens, G., The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. Med., 1992, 13, 341.10.1016/0891-5849(92)90181-FSearch in Google Scholar

[48] Cakmak, I.; Horst, W.J., Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plantarum., 1991, 83, 463–468.10.1034/j.1399-3054.1991.830320.xSearch in Google Scholar

[49] Habig, H.; Pabst, M.J.; Jokoby, W.B., Glutathione–S–transferase: the first enzymatic step in mercapturic acid formation. J. Biol. Chem., 1974, 249, 7130–7139.10.1016/S0021-9258(19)42083-8Search in Google Scholar

[50] Flohe, L.; Gunzler, W.A., Assays of glutathione peroxidase. Methods Enzymol, 1984, 105, 114–121.10.1016/S0076-6879(84)05015-1Search in Google Scholar

eISSN:
2367-5144
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Chemistry, other, Geosciences, Geography, Life Sciences, Physics