Accès libre

An Efficient Protein Extraction Method from Astragalus armatus Willd. Roots for Proteomic Analysis

À propos de cet article

Citez

Kheloufi, A., Mansouri, L.M., Bouafia, B., Khamari, Y., Kheloufi. H., Bouguern, Y. (2018). Morphological characteristics and seed germination improvement of two ecotypes of Astragalus armatus willd. subsp. Armatus in algeria, Cercetări Agronomice în Moldova, 4 (176), 96-107.Search in Google Scholar

Ashour, M. A. (2019). Comparative chemical and biological investigations of three Saudi Astragalus species. Journal of Applied Biology & Biotechnology, 7(05), 56-61.Search in Google Scholar

Bouaziz, M., Dhouib, A., Loukil, S., Boukhris, M., Sayadi, S. (2009). Polyphenols content, antioxidant and antimicrobial activities of extracts of some wild plants collected from the south of Tunisia. African Journal of Biotechnology, 8 (24), 7017-7027.Search in Google Scholar

Semmar, N., Tomofumi, M., Mrabet, Y., Lacaille-Dubois, M-A. (2010). Two New Acylated Tridesmosidic Saponins from Astragalus armatus. Helvetica Chimica Acta, 93, 870-876.Search in Google Scholar

Labed, A., Ferhat, M., Labed-Zouad, I., Kaplaner, E., Zerizer, S., Voutquenne-Nazabadioko, L., Alabdul, M. A., Semra, Z., Kabouche, A., Kabouche, Z., Ozturk, M. (2016). Compounds from the pods of Astragalus armatus with antioxidant, anticholinesterase, antibacterial and phagocytic activities. Pharmaceutical Biology, 54(12), 3026–3032.Search in Google Scholar

Mahmoudi, M., Abdellaoui, R., Boughalleb, F., Yahia, B., Mabrouk, M., Nasria, N. (2021). Characterization of lipids, proteins, and bioactive compounds in the seeds of three Astragalus species. Food Chemistry, 339, 127824Search in Google Scholar

Boual, Z., Pierre, G., Delattre. C., Benaoun, F., Petit. E., Gardarin, C., Michaud, P., Ould El Hadj. M. D. (2015). Mediterranean semi-arid plant Astragalus armatus as a source of bioactive galactomannan. Bioactive Carbohydrates and Dietary Fibre, 5, 10–18.Search in Google Scholar

Paulin, L., Corey, R.B., Branson, H.R. (1951). The structure of protein: Two hydrogen-bonded helical configurations of the polypeptide chain. The Proceedings of the National Academy of Sciences, 37, 205-211. https://doi.org/10.1073/pnas.37.4.205Search in Google Scholar

Kumar, M., Tomar, M., Potkule, J., Verma, R., Punia, S., Mahapatra, A., Belwal, T., Dahuja, A., Joshi, S., Berwal, M. K., Satankarj, V., Bhoite A. G. k., Amarowicz, R., Kaur, C., Kennedy, J. F. (2021). Review Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocolloids, 115, 106595.Search in Google Scholar

Chandran, A.S., Suri, S., Choudhary, P. (2023). Sustainable plant protein: an up-to-date overview of sources, extraction techniques and utilization. Royal Society of Chemistry, 1, 466–483Search in Google Scholar

Wu, X., Gong, F., Wang, W. (2014). Protein extraction from plant tissues for 2DE and its application in proteomic analysis. Proteomics, 14, 645-658.Search in Google Scholar

Givonetti, A., Cattaneo, C., Cavaletto, M. (2021). What You Extract Is What You Get: Different Methods of Protein Extraction from Hemp Seeds. Separations, 8, 231.Search in Google Scholar

Bocian, A., Ciszkowicz, E., Hus, K. K., Buczkowicz, J., Lecka-Szlachta, K., Pietrowska, M., Petrilla, V., Petrillova, M., Legáth, L., Legáth, J. (2020). Antimicrobial Activity of Protein Fraction from Naja ashei Venom against Staphylococcus epidermidis. Molecules, 25, 293. https://doi.org/10.3390/molecules25020293Search in Google Scholar

Elias, R. J., Kellerby, S. S., Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition, 48 (5), 430-441. http://dx.doi.org/10.1080/10408390701425615Search in Google Scholar

Ahmadabad, H. N., Hassan, Z.M., Safari, E., Bozorgmehr, M., Ghazanfari, T., Moazzeni, S. M. (2011). Evaluation of the immunomodulatory effect of the 14 kDa protein isolated from aged garlic extract on dendritic cells. Cellular Immunology, 269, 90–95.Search in Google Scholar

Chandra, S., Rupachandra, S., Porkodi, S., Joann, D. M., Jagadeeshwari, S. (2019). Antiproliferative Activity of Two Protein Fractions from the Seeds of Momordica dioica (Cucurbitaceae family). Journal of Biologically Active Products from Nature, 9 (4), 311 – 319.Search in Google Scholar

Aluko, R. E. (2015). Antihypertensive Peptides from Food Proteins. The Annual Review of Food Science and Technology, 6: 235–62. 10.1146/annurev-food-022814-015520.Search in Google Scholar

Abdullah, F. I., Chua L. S., Rahmat Z. (2017). Comparison of protein extraction methods for the leaves of ficus deltoidea. Journal of Fundamental and Applied Sciences, 9(2), 908-924.Search in Google Scholar

Aquino-Gil, M.O., Kupferschmid, M., Shams-Eldin, H., Schmidt, J., Yamakawa, N., Mortuaire, M., Krzewinski, F., Hardivillé, S., Zenteno, E., Rolando, C., Bray, F., Pérez Campos, E., Dubremetz, J-F., Perez-Cervera, Y., Schwarz, R.T., Lefebvre, T. (2018). Apart From Rhoptries, Identification of Toxoplasma gondii’s O-GlcNAcylated Proteins Reinforces the Universality of the O-GlcNAcome. Frontiers in Endocrinology, 9,450. https://doi.org/10.3389/fendo.2018.00450Search in Google Scholar

Guinez, C., Lemoine, J., Michalski, J-C., Lefebvre, T. (2004). 70-kDa-heat shock protein presents an adjustable lectinic activity towards O-linked N-acetylglucosamine. Biochemical and Biophysical Research Communications, 319, 21–26. https://doi.org/10.1016/j.bbrc.2004.04.144Search in Google Scholar

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697Search in Google Scholar

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 270, 680–685Search in Google Scholar

Caronni, S., Addis, F., Delaria, M. A.., Gentili, R., Montagnani, C., Navone, A., Panzalis, P., Citterio, S. (2021). Comparative evaluation of multiple protein extraction procedures from three species of the genus Caulerpa. Journal of Applied Phycology, 33:2485–2496. https://doi.org/10.1007/s10811-021-02479-zSearch in Google Scholar

Broeckx, V., Boonen, K., Pringels, L., Sagaert, X., Prenen, H., Landuyt, B., Schoofs, L., Maes, E. (2016). Comparison of multiple protein extraction buffers for GeLC-MS/MS proteomic analysis of liver and colon formalin-fixed, paraffin-embedded tissues. Molecular BioSystems, 12, 553-565.Search in Google Scholar

Weston, L.A., Bauer, K. M., Hummon, A. B. (2013). Comparison of bottom-up proteomic approaches for LC-MS analysis of complex proteomes. Analytical Methods, 5(18). https://doi.org/10.1039/C3AY40853ASearch in Google Scholar

Mehraj, S. Sana., Kamili, A. N., Nazir, R., Haq, E., Balkhi, H. M. (2018). Comparative evaluation of extraction methods for total proteins from Crocus sativus L. (Saffron). Saudi Journal of Biological Sciences, 25, 1603–1608.Search in Google Scholar

Singh, N., Jain, N., Kumar, R., Jain, A., Singh, N. K., Rai, V. (2015). A comparative method for protein extraction and 2-D gel electrophoresis from different tissues of Cajanus cajan. Frontiers in Plant Science, 6, 606.Search in Google Scholar

Wang, N., Wu, X., Ku, L., Chen, Y., Wang, W. (2016). Evaluation of Three Protein-Extraction Methods for Proteome Analysis of Maize Leaf Midrib, a Compound Tissue Rich in Sclerenchyma Cells. Frontiers in Plant Science, 7, 856. https://doi.org/10.3389/fplsSearch in Google Scholar

Elizabeth, H., Peuchen, L. Sun., Norman, J. D. (2016). Optimization and comparison of bottom-up proteomic sample preparation for early-stage Xenopus laevis embryos. Analytical and Bioanalytical Chemistry, 408(17), 4743–4749. https://doi.org/10.1007/s00216-016-9564-2Search in Google Scholar

Wang, X., Li, X., Deng, X., Han, H., Shi, W., Li, Y. (2007). A protein extraction method compatible with proteomic analysis for the euhalophyte Salicornia europaea. Electrophoresis, 28, 3976-3987. https://doi.org/10.1002/elps.200600805Search in Google Scholar

eISSN:
2543-8050
Langue:
Anglais