Accès libre

Isolation and Study of the Nutritional Variability of Peripheral Layers of Barley Grains During Development

À propos de cet article

Citez

1. Faostat. (2019). Food and Agriculture Organization of the United Nation. http://www.fao.org/faostat/en/%data2019 Search in Google Scholar

2. Monterrey, D. (2016). Cereals: Dietary Importance. Encyclopedia of Food and Health. Elsevier Ltd Search in Google Scholar

3. Saulnier, L. (2012). Cereal Grains: Diversity and Nutritional Compositions. Cahier de Nutrition and Diététiques; 47, 54-515 Search in Google Scholar

4. Nair, S., Knoblauch, M., Ullrich, S., Baik, B.K. (2011). Microstructure of hard and soft kernels of barley. Journal of Cereal Science, 54 (3), 354-362 https://doi.org/10.1016/j.jcs.2011.06.014 Search in Google Scholar

5. Baik, B.K., Ullrich, S.E. (2008). Barley for food: characteristics, improvement, and renewed interest. Journal of Cereal Science, 48, 233–242 https://doi.org/10.1016/j.jcs.2008.02.002 Search in Google Scholar

6. Edney, M.J. (2004). Mather DE. Quantitative trait loci affect in germination trait s and malt friability in a two-rowed by six -rowed barley cross. Journal of Cereal Science, 39, 283-290 https://doi.org/10.1016/j.jcs.2003.10.008 Search in Google Scholar

7. Laskowski, W., Gorska-Warsewicz, H., Rejman, K., Czeczotko, M., Zwolinska, J. (2019). How important are cereals and cereal products in the average polish diet? Nutrients, 11(3), 679 https://doi.org/10.3390/nu11030679 Search in Google Scholar

8. Hariri, A. (2003). Study and modeling of malting tempering. Thesis of D. thesis. ENSIA, Institut national polytechnique of Lorraine, specialty: biotechnology and food industries. p. 218. Search in Google Scholar

9. Ordaz-Ortiz, J.J., Devaux, M.F., Saulnier, L. (2005). Classification of wheat varieties based on structural features of arabinoxylans as revealed by endoxylanase treatment of flour and grain. Journal of Agricultural and Food Chemistry, 53, 8349-8356 https://doi.org/10.1021/jf050755v Search in Google Scholar

10. Dornez, E., Cuyvers, S., Holopainen, U., Nordlund, E., Poutanen, K., Delcour, J.A., Courtin, C.M. (2011). Inactive fluorescently labelled xylanase as a novel probe for microscopic analysis of arabinoxylan containing wheat cell walls. Journal of Agricultural and Food Chemistry, 59, 6369e6375 https://doi.org/10.1021/jf200746g Search in Google Scholar

11. Guillon, F., Tranquet, O., Quillien, L., Utille, J.P., Ordaz, Ortiz, J.J., Saulnier, L. (2004). Generation of polyclonal and monoclonal antibodies against arabinoxylans and their use for immunocytochemical location of arabinoxylans in cell walls of Endosperm of wheat. Journal of Cereal Science, 40, 167e182 Search in Google Scholar

12. Jilal, A. (2011). Assessment of genetically diverse international barley germplasm for development of food product applications. Thesis of doctora. Southern Cross University, p. 186 Search in Google Scholar

13. Czuchajowska, Z., Klamczynski, A., Paszczynska, B., Baik, B.K. (1998). Structure and functionality of barley starches. Cereal Chemistry, 75, 747–754 http://dx.doi.org/10.1094/CCHEM.1998.75.5.747 Search in Google Scholar

14. Izydorczyk, M.S., Storsley, J., Labossiere, D., MacGregor, A.W., Rossnagel, B.G. (2000). Variation in total and soluble b-glucan content in hulless barley: effects of thermal, physical, and enzymic treatments. Journal of Agricultural and Food Chemistry, 48, 982–989. https://doi.org/10.1021/jf991102f Search in Google Scholar

15. Boufena, Z., Zaghouane, O., Zaghouane, F. (2006). Guide to the main varieties of straw cereals in Algeria. Ed ITGC; ICARDA; Algiers 154 p Search in Google Scholar

16. Guide of the main varieties of Straw cereal in Algeria, (2006). Search in Google Scholar

17. Nougarède, A. (1969). Plant biology. Volume I. Cytology. Ed. Masson; 598p Search in Google Scholar

18. Latta, M., Eskin, M. (1980). A Simple and Rapid Colorimetric Method for Phytate Determination. Journal of Agricultural and Food Chemistry, 28, 1313–1315. https://doi.org/10.1021/jf60232a049 Search in Google Scholar

19. Vaintraub, L.A., Lapteva, N.A. (1988). Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Analytical Biochemistry, 175, 227-230pp https://doi.org/10.1016/0003-2697(88)90382-X Search in Google Scholar

20. Rodier, J. (2005). The water analysis ‘‘natural water, waste water, sea water’’ (Paris: Bordas, 1984).p 66. Search in Google Scholar

21. Ween the AOAC. (1993). Methods of analysis for nutrition labeling. Airlington, USA. Fiber extractor for dosing of the raw fiber content; References 10521 & 10522 Search in Google Scholar

22. Troll, W., Lindsley, J.A. (1955). Photometric method for determination of proline. Jornal of Biological Chemistry. 215, 655 – 660 https://doi.org/10.1016/S0021-9258(18)65988-5 Search in Google Scholar

23. Rasio, A., Sorrentinio, G., Cedola, M.C., Pastore, D., Wittner, G. (1987). Osmotic and elastic adjustment of durum wheat leaves under stress conditions. Genetic Agr; 41, p: 427–436 https://doi.org/10.3923/ajbs.2020.119.126 Search in Google Scholar

24. Barron, C., Surget, A., Rouau, X. (2007). Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. Journal of Cereal Science, 45, 88-96 https://doi.org/10.1016/j.jcs.2006.07.004 Search in Google Scholar

25. Briggs, D.E. (1987). The morphology of barley; the vegetative phase, in: Briggs, D. E. (Ed. Eds), Barley. Chapman and Hall Ltd: London; 1-15 Search in Google Scholar

26. Evers, A.D., Blakeney, A.B., O’Brien, L. (1999). Cereal structure and composition. Australian Journal of Agricultural Research, 50, 629-650 Search in Google Scholar

27. Coban, H.b., Demirci, A. (2017). Chapter 2 -Phytase as a diet ingredient: from microbial production to its applications in food and feed industry. In Microbial Production of Food Ingredients and Additives [online]. Academic Press. 33-55, Handbook of Food Bioengineering; ISBN978-0-12-811520-6 Search in Google Scholar

28. Kumar, V., Sinha, A. K., Makkarh, P.S., Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition. Food Chemistry, 120 (4), 945-959. https://doi.org/10.1016/j.foodchem.2009.11.052 Search in Google Scholar

29. Selle, P.h., Ravindran, V. (2007). Microbial phytase in poultry nutrition. Animal Feed Science and Technology, 135 (1), 1-41 https://doi.org/10.1016/j.anifeedsci.2006.06.010 Search in Google Scholar

30. Kumar, V., Sinha, A.k. (2018). Chapter 3 -General aspects of phytases. In: Enzymes in Human and Animal Nutrition [online]. Academic Press. 53-72. ISBN978-0-12-805419-2 Search in Google Scholar

31. Schlemmer, U., Frolich, W., Prieto, Rafel, M., Grases, F. (2009). Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition & Food Research; 53 Suppl 2, S330-375 https://doi.org/10.1002/mnfr.200900099 Search in Google Scholar

32. Dai, F., Qiu, L., Xu, Y., Cai, S., Qiu, B., Zhang, G. (2010). Differences in phytase and phytic acid content between cultivated and tibetan annual wild barleys. Journal of Agricultural and Food Chemistry; 58, 11821-11824 https://doi.org/10.1021/jf1029948 Search in Google Scholar

33. Barron, C., Samson, M. F., Lullien-Pellerin, V., Rouau, X. (2011). Wheat grain tissue proportions in milling fractions using biochemical marker measurements: application to different wheat cultivars. Journal of Cereal Science; 53, 306-311 https://doi.org/10.1016/j.jcs.2011.01.013 Search in Google Scholar

34. Tang, A. L., Wilcox, G., Walker, K. Z., Shah, N. P., Ashton, J. F., Stojanovsk, A. (2010a). Phytase activity from Lactobacillus spp. in calcium-fortified soymilk. Journal of Food Science. 75, 6, M373-M376 https://doi.org/10.1111/j.1750-3841.2010.01663.x Search in Google Scholar

35. Lazarte, C. E., Carlsson, N.G., Almgren, A., Sandberg, A. S., Granfeldt, Y. (2015) Phytate, zinc, iron and calcium content of common Bolivian food, and implications for mineral bioavailability. Journal of Food Composition and Analysis. 39, 111-119 https://doi.org/10.1016/j.jfca.2014.11.015 Search in Google Scholar

36. Bhave, M., Morris, C.F. (2008). Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Molecular Biology; 66(3), 205-219 https://doi.org/10.1007/s11103-007-9263-7 Search in Google Scholar

39. Egli, I., Davidsson, L., Juillerat, M.A., Barclay, D., Hurrell, R. (2003). Phytic acid degradation in complementary foods using phytase naturally occurring in whole grain cereals. Journal of Food Science, 68 (5), 1855-1859 https://doi.org/10.1111/j.1365-2621.2003.tb12342.x Search in Google Scholar

40. Salem, H.B., Abdouli, H., Nefzaoui, A., El-Mastouri, A., BenSalem, L. (2005). Nutritive behaviour, and growth of Barbine lambs fed on oldman saltbush (Atriplex nummularia L.) and supplemented or not with barley grains or spineless cactus (Opuntia ficus-intermis) pads. Small Ruminant Research, 59, 229-237 https://doi.org/10.1016/j.smallrumres.2005.05.010 Search in Google Scholar

41. Fardet, A. (2010). New hypotheses for the health protective mechanisms of whole grain cereals:what is beyond fiber? Nutrition Research Reviews, 23,65–134. https://doi.org/10.1017/S0954422410000041 Search in Google Scholar

42. Moore, K.L., Zhao, F.J., Gritsch, C.S., Tosi, P., Hawkesford, M.J., McGrath, S.P., Shewry, P.R., Grovenor, C.R.M. (2012). Localisation of iron in wheat grain using high resolution secondary ion mass spectrometry. Journal of Cereal Science, 55, 183–187. https://doi.org/10.1016/j.jcs.2011.11.00 Search in Google Scholar

43. Brouns, F., Hemery, Y., Price, R., Anson, N.M. (2012). Wheat aleurone separation, composition, health aspects, and potential food use. Critical Reviews in Food Science and Nutrition, 52, 553–568 https://doi.org/10.1080/10408398.2011.589540 Search in Google Scholar

44. Chalamacharla, R.B., Harsha, K., Sheik, K.B., Viswanatha, C.K. (2018). Wheat bran- composition and nutritional quality: a review. Advances Biotechnology & Microbiology, 9 (1), 555754 10.19080/AIBM.2018.09.555754 Search in Google Scholar

45. Fredlund, K., Isaksson, M., Rossander-Hulthén, L., Almgren, A., Sandberg, A.S. (2006). Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate. Journal of Trace Elements in Medicine and Biology. 20, 1, 49-57 https://doi.org/10.1016/j.jtemb.2006.01.003 Search in Google Scholar

46. Austin, R.B., Craufurd, P.Q. (1989). The Agrometeorology of rainfed barley-based farming systems. Proceedings of an International Symposium. Ed. M. Johns, G.Mathys and D. The Ecophysiology of barley Tunis 6-10 Mars; Rijks: 35-57 Search in Google Scholar

47. Salem, H.B., Nefzaoui, A., Ben Salem, L. (2004). Spliness cactus (Opuntia ficus indica f. Intermis) and oldman saltbush (Atriplex nummularia L.) As alternative supplements for growing Barbarine lambs given straw-based diets. Small Ruminant Research, 51, 65-73 https://doi.org/10.1016/S0921-4488(03)00186-X Search in Google Scholar

48. Soylak, M., Tuzen, M., Narin, I., Sari, H. (2004). Comparison of microwave, dry and wet digestion procedures for the determination of trace metal. Journal of Food and Drug Analysis, 12(3), 254–258. Search in Google Scholar

49. Peterson, C.M., Klepper, B., Rickman, R.W. (1989). Seed reserves and seedling developmen in winter wheat. Agronomy Journal, 81(2), 245-251 Search in Google Scholar

50. Bock, M.A. (2000). Minor Constituents of Cereals. Food Science and Technology-New York-Marcel Dekker; 479-504 Search in Google Scholar

51. Qiu, H., Nadaud, I., Ledoigt, G., Piquet-Pissaloux, A., Branlard, G. (2016). Interruption of magnesium supply at heading influenced proteome of peripheral layers and reduced grain dry weight of two wheat (Triticum aestivum L.) genotypes. Journal of Proteomics, 143, 83–92 https://doi.org/10.1016/j.jprot.2016.03.029 Search in Google Scholar

52. Bartnik, M., & Jakubczyk, T. (1989). Chemical composition and the nutritive value of wheat bran. World review of nutrition and dietetics. Search in Google Scholar

53. Sarpong, S. (2014). Traceability and supply chain complexity: confronting the issues and concerns. European Business Review, 26 (3), 271–284. https://doi.org/10.1108/EBR-09-2013-0113 Search in Google Scholar

54. Fraga, C.G. (2005). Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 26, 235–244. https://doi.org/10.1016/j.mam.2005.07.013 Search in Google Scholar

55. Kaiser, C.R., Bowman, J.G.P., Surber, L.M.M., Blake, T.K., Borkowski,.J.J. (2004). Variation in apparent component digestibility of barley in the rat from the core collection of the USDA National Small Grains Collection. Animal Feed Science and Technology, 113 (1-4), 97–112 https://doi.org/10.1016/j.anifeedsci.2003.11.008 Search in Google Scholar

56. Svihus, B., Gullord, M. (2002). Effect of chemical content and physical characteristics on nutritional value of wheat, barley and oats for poultry. Animal Feed Science and Technology, 102 (1-4), 71–92 https://doi.org/10.1016/S0377-8401(02)00254-7 Search in Google Scholar

57. Ragaee, S., El-Sayed, M., Abdel-Al Maher, N. (2006). Antioxydant activity and nutrient composition of selected cereals for food use. Food chemistry, 98 (1), 32-38 https://doi.org/10.1016/j.foodchem.2005.04.039 Search in Google Scholar

58. Fincher, G.B., Stone, B.A. (1986). Cell walls and their components in cereal grain technology. Advances in Cereal Science and Technology, 8, 207-295 Search in Google Scholar

59. Muir, J.G., Elaine, G.W., Keogh, J., Pizzey, C., Bird, A.R., Sharpe, K. (2004). Combining wheat bran with resistant starch has more beneficial effects on fecal indexes than does wheat bran alone. The American Journal of Clinical Nutrition, 79, 1020-1028 https://doi.org/10.1093/ajcn/79.6.1020 Search in Google Scholar

60. Kim, H., Stokes, K.S., Behall, K.M., Spears, K., Vinyard, B., Conway, J.M. (2009). Glucose and insulin responses to whole grain breakfasts varying in soluble fiber, β-glucan. European Journal of Nutrition, 48(3), 170-175 https://doi.org/10.1007/s00394-009-0778-3 Search in Google Scholar

61. Biel, W., Bobko, K., Maciorowski, R. (2009). Chemicalcomposition and nutritive value of husked and naked oats grain. Journal of Cereal Science, 49, 413–418 https://doi.org/10.1016/j.jcs.2009.01.009 Search in Google Scholar

62. Wozniak, A., Soroka, M.S.T., Epniowska, A., Makarski, B. (2014). Chemical composition of spring barley (Hordeum vulgare L.) grain cultivated in various tillage systems. Journal of Elementology, 19(2), 597–606. https://doi.org/10.5601/jelem.2014.19.2.438 Search in Google Scholar

63. Biel, W., Jaroszewska, A., Stankowski, S., Sadkiewicz, J., Bosko, P. (2015). Effects of genotype and weed control on the nutrient composition of winter spelt (Triticum aestivum ssp. Spelta L.) and common wheat (Triticum aestivum ssp. vulgare). Acta Agriculturae Scandinavica, Section B – Soil Plant Sci, 66(1), 27–35. https://doi.org/10.1080/09064710.2015.1062533 Search in Google Scholar

64. Alijošius, S., Švirmickas, G.J., Bliznikas, S., Gružauskas, R., Šašyte, V., Raceviciute-Stupeliene, A., Kliševiciute, V., Daukšiene, A. (2016). Grain chemical composition of different varieties of winter cereals. Zemdirbyste, 103(3), 273–280. https://doi.org/10.13080/z-a.2016.103.035 Search in Google Scholar

65. Biel, W., Maciorowski, R., Bobko, K., Jaskowska, I. (2011). Chemical composition and energy value of dwarf oats grain. Italian Journal of Food Science, 23(2), 180–187 Search in Google Scholar

66. Sykut-Domanska, E., Rzedzicki, Z., Nita, Z. (2013). Chemical Composition Variability of Naked and Husked Oat Grain (Avena sativa L.). Cereal Research Communications, 41(2), 327–337 https://doi.org/10.1556/crc.2013.0007 Search in Google Scholar

67. Khan, M.S., Yu, X., Kikuchi, A., Asahina, M. (2009). Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnology, 26, 125-13 https://doi.org/10.5511/plantbiotechnology.26.125 Search in Google Scholar

68. Frances, M.D., William, J.H., William, H.V., Charlene, T., Kerry, M.K., Okkyung, K.C., Susan, B.A. (2006). Protein accumulation and composition in wheat grains: effects of mineral nutrients and High temperature. European Journal of Agronomy, 25(2), 96-107 https://doi.org/10.1016/j.eja.2006.04.003 Search in Google Scholar

69. Raza, S.H., Athar, H.R., Ashraf, M., Hameed, A. (2007). Glycine betaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environmental and Experimental Botany, 60(3), 368-376 https://doi.org/10.1016/j.envexpbot.2006.12.009 Search in Google Scholar

eISSN:
2543-8050
Langue:
Anglais