1. bookVolume 16 (2019): Edition 2 (November 2019)
Détails du magazine
License
Format
Magazine
eISSN
1336-9253
Première parution
24 Aug 2013
Périodicité
2 fois par an
Langues
Anglais
access type Accès libre

Calorific Value of Basic Fractions of Above-Ground Biomass for Scots Pine

Publié en ligne: 24 Apr 2020
Volume & Edition: Volume 16 (2019) - Edition 2 (November 2019)
Pages: 34 - 37
Détails du magazine
License
Format
Magazine
eISSN
1336-9253
Première parution
24 Aug 2013
Périodicité
2 fois par an
Langues
Anglais
Abstract

In this work, the calorific value content in the dry matter of the Scots pine (Pinus sylvestris L.) trees was evaluated. This dry matter was obtained only from the above-ground fractions of its biomass. Our experimental material was taken from five Scots pine trees situated in Slovakia. Wood and bark samples were obtained from the discs which were cut off from three locations, namely from the stem, branches of tree crowns and needles. Then, calorific value capacity (J g−1) in the dry matter of each sample was determined. The impact of statistically significant factors on the calorific value capacity was determined by means of analysis of variance. The average values are, according to the fractions, approximately in the range of 20,000–22,200 J g−1. The smallest capacity of the calorific value, approximately 20,000 J g−1, has the dry matter from bark obtained from the middle and crown parts of the stem. Then, the dry matter from stem wood and branches follows with a value of approximately 20,700 J g−1. Then follows dry matter of the coarse bark occurring on the stem butt and twigs that are covered with needles with a value of about 21,900 J g−1; and finally pine needles with the highest values of about 22,200 J g−1. The calorific value variability is relatively low with coefficients of variations of 0.9–2.8%.

Keywords

JAMNICKÁ, G. – PETRÁŠOVÁ, V. – PETRÁŠ, R. – MECKO, J. – OSZLÁNYI, J. 2014. Energy production of poplar clones and their energy use efficiency. In iForest, 2014, no. 14, pp. 150–155.Search in Google Scholar

KLAŠNJA, B. – KOPITOVIČ, Š. 1999. Quality of wood of some willow and robinia clones as fuelwood. In Drevársky výskum, 1999, no. 44, pp. 9–18.Search in Google Scholar

KUPKA K. 2013. QC.Expert 3.1. In Uživatelský manuál, Pardubice : TryloByte, Ltd., 2013, 266 pp.Search in Google Scholar

LARCHER, W. 2003. Physiological Plant Ecology: Ecophysiology and Stress Physiology of functional groups. 4th ed., New York : Springer, 2003, 513 pp.Search in Google Scholar

MATOVIČ, A. – ŠLEZINGEROVÁ, J. 1992. Konvenční hustota dřeva větví smrku obecného (Picea abies Karst.). In Zborník medzinárodnej vedeckej konferencie Les, drevo, ekológia, Sekcia 4. Štruktúra a vlastnosti dreva v technologickom využití, 1992, pp. 53–59.Search in Google Scholar

NIEMZ, P. – SONDEREGGER, W. 2003. Untersuchungen zur Korrelation ausgewählter Holzeigenschaften untereinander und mit der Rohdichte unter Verwendung von 103 Holzarten. In Schweizerische Zeitschrift für Forstwesen, 2003, no. 154, pp. 489–493.Search in Google Scholar

OSZLÁNYI, J. – BISKUPSKÝ, V. 1979. Energetická hodnota nadzemnej biomasy drevín v dubovo-hrabovom lese. In Acta Ecologica, 1979, no. 20, pp. 59–105.Search in Google Scholar

PETRÁŠ, R. – PAJTÍK, J. 1991. Sústava česko-slovenských objemových tabuliek drevín. In Lesnícky časopis, 1991, no. 37, pp. 49–56.Search in Google Scholar

PETRÁŠ, R. – MECKO, J. – NEUSCHLOVÁ, E. 2010. Density of basic components of above-ground biomass of poplar clones. In Wood Research, 2010, no. 55, pp. 113–122.Search in Google Scholar

PETRÁŠ, R. – MECKO, J. – OSZLÁNYI, J. – PETRÁŠOVÁ, V. – JAMNICKÁ, G. 2013a. Landscape of danube inland-delta and its potential of poplar bioenergy production. In Biomass And Bioenergy, 2013, no. 55, pp. 68–72.Search in Google Scholar

PETRÁŠ, R. – MECKO, J. – PETRÁŠOVÁ, V. 2013b. Energy potential in production of fast-growing poplar clones in slovak regions. In Acta Regionalia et Environmentalica, 2013, no. 10, p. 53–56.Search in Google Scholar

PETRÁŠ, R. – MECKO, J. – KRUPOVÁ, D. – SLAMKA, M. 2018a. Predbežné výsledky výskumu hustoty nadzemnej dendromasy hospodársky významných druhov drevín. In Baláš, M. – Podrázský, V. – Gallo, J. (eds.): Proceedings of Central European Silviculture. Praha : ČZU, 2018, no. 8, pp. 94–101.Search in Google Scholar

PETRÁŠ, R. – MECKO, J. – KUKLOVÁ, M. – KUKLA, J. 2018b. Výskum kapacity spalného tepla lesných drevín. In Gálik, B. – Zelinková, G. (eds.): Recenzovaný zborník vedeckých prác Slovenskej spoločnosti pre poľnohospodárske, lesnícke, potravinárske a veterinárske vedy pri Slovenskej akadémii vied, pobočka Nitra. Nitra : SPU, 2018, pp. 277–284.Search in Google Scholar

PETRÁŠ, R. – MECKO, J. – KRUPOVÁ, D. – SLAMKA, M. 2019. Aboveground biomass basic density of softwoods tree species. In Wood Research, 2019, no. 64 (in print).Search in Google Scholar

POŽGAJ, A. – CHOVANEC, D. – KURJATKO, S. – BABIAK, M. 1997. Štruktúra a vlastnosti dreva. Bratislava : Príroda, 1997, 485 pp.Search in Google Scholar

PRETZSCH, H. 2009. Forest Dynamics, Growth and Yield. Berlin : Heidelberg, Springer, 2009, 664 pp.10.1007/978-3-540-88307-4Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo