Accès libre

Effects of dietary yeast culture on humoral and mucosal immunity, gut microbiota, hepatic antioxidant and stress responses in rainbow trout, Oncorhynchus mykiss

, ,  et   
29 août 2025
À propos de cet article

Citez
Télécharger la couverture

Abass D.A., Obirikorang K.A., Campion B.B., Edziyie R.E., Skov P.V., (2018). Dietary supplementation of yeast (Saccharomyces cerevisiae) improves growth, stress tolerance, and disease resistance in juvenile Nile tilapia (Oreochromis niloticus). Aquac. Int., 26: 843–855. Search in Google Scholar

Abdel-Tawwab M., Adeshina I., Issa Z.A., (2020). Antioxidants and immune responses, resistance to Aspergilus flavus infection, and growth performance of Nile tilapia, Oreochromis niloticus, fed diets supplemented with yeast, Saccharomyces serevisiae. Animal feed science and technology, 263: 114484. Search in Google Scholar

Abdel‐Tawwab M., Mousa M.A., Mohammed M.A., (2010). Use of live baker’s yeast, Saccharomyces cerevisiae, in practical diet to enhance the growth performance of Galilee tilapia, Sarotherodon galilaeus (L.), and its resistance to environmental copper toxicity. J. World. Aquac. Soc., 41: 214–223. Search in Google Scholar

Ainsworth A.J., (1992). Fish granulocytes: Morphology, distribution, and function. Annu. Rev. Fish Dis., 2: 123–148. Search in Google Scholar

Barton B.A., (2002). Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol., 42: 517–525. Search in Google Scholar

Bavia L., Santiesteban-Lores L.E., Carneiro M.C., Prodocimo M.M., (2022). Advances in the complement system of a teleost fish, Oreochromis niloticus. Fish Shellfish Immunol., 123: 61–74. Search in Google Scholar

Blaxhall P.C., (1972). The haematological assessment of the health of freshwater fish. J. Fish Biol., 4: 593–604. Search in Google Scholar

Chen J., Dong Z., Lei Y., Yang Y., Guo Z., Ye J., (2022). β-glucan mitigation on toxicological effects in monocytes/macrophages of Nile tilapia (Oreochromis niloticus) following copper exposure. Fish Shellfish Immunol., 121: 124–134. Search in Google Scholar

Chiu C.-H., Cheng C.-H., Gua W.-R., Guu Y.-K., Cheng W., (2010). Dietary administration of the probiotic, Saccharomyces cerevisiae P13, enhanced the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish Shellfish Immunol., 29: 1053–1059. Search in Google Scholar

Cid García R.A., Hernández Hernández L.H., Carrillo Longoria J.A., Fernández Araiza M.A., (2020). Inclusion of yeast and/or fructooligosaccharides in diets with plant-origin protein concentrates for rainbow trout (Oncorhynchus mykiss) fingerlings. J. World. Aquac. Soc., 51: 970–981. Search in Google Scholar

Ciji A., Akhtar M.S., (2021). Stress management in aquaculture: a review of dietary interventions. Rev Aquacult, 13: 2190–2247. Search in Google Scholar

Czerucka D., Piche T., Rampal P., (2007). Review article: yeast as probiotics –Saccharomyces boulardii. Aliment. Pharmacol. Ther., 26: 767–778. Search in Google Scholar

Dacie J., Lewis S., (1996). Practical hematology. Charchill and Livingston, London. Search in Google Scholar

de Mattos B.O., López-Olmeda J.F., Guerra-Santos B., Ruiz C.E., García-Beltrán J.M., Ángeles-Esteban M., Sánchez-Vázquez F.J., Fortes-Silva R., (2019). Coping with exposure to hypoxia: modifications in stress parameters in gilthead seabream (Sparus aurata) fed spirulina (Arthrospira platensis) and brewer’s yeast (Saccharomyces cerevisiae). Fish Physiol. Biochem., 45: 1801–1812. Search in Google Scholar

del Valle J.C., Bonadero M.C., Fernández-Gimenez A.V., (2023). Saccharomyces cerevisiae as probiotic, prebiotic, synbiotic, postbiotics and parabiotics in aquaculture: An overview. Aquaculture, 569: 739342. Search in Google Scholar

El-Bab A.F.F., Saghir S.A.M., El-Naser I.A., El-Kheir S.M.M.A., Abdel-Kader M.F., Alruhaimi R.S., Alqhtani H.A., Mahmoud A.M., Naiel M.A.E., El-Raghi A.A., (2022). The effect of dietary Saccharomyces cerevisiae on growth performance, oxidative status, and immune response of sea bream (Sparus aurata). Life, 12: 1013. Search in Google Scholar

Ellis A.E., (1990). Lysozyme assays. in: Stolen, J.S. (Ed.), Techniques in fish immunology. SOS publication, Fair Haven, pp. 101–103. Search in Google Scholar

FAO, (2023). Fishery statistical collections: global aquaculture production. FAO, Roma, Italy, pp. 2. Search in Google Scholar

Faught E., Vijayan M.M., (2016). Mechanisms of cortisol action in fish hepatocytes. Comparative biochemistry and physiology part B: Biochemistry and molecular biology, 199: 136–145. Search in Google Scholar

Feng Z., Zhong Y., He G., Sun H., Chen Y., Zhou W., Lin S., (2022). Yeast culture improved the growth performance, liver function, intestinal barrier and microbiota of juvenile largemouth bass (Micropterus salmoides) fed high-starch diet. Fish Shellfish Immunol., 120: 706–715. Search in Google Scholar

Gopalakannan A., Arul V., (2010). Enhancement of the innate immune system and disease‐ resistant activity in Cyprinus carpio by oral administration of β‐glucan and whole cell yeast. Aquac. Res., 41: 884–892. Search in Google Scholar

Goth L., (1991). A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta, 196: 143–151. Search in Google Scholar

Hassanalizadeh Chari F., Akrami R., Ghelichi A., Ebrahimi P., (2020). The effect of Lavandula officinalis nanoemulsion on growth performance, body composition, haematology and immunity parameters of Oncorhynchus mykiss. Journal of applied animal research, 48: 340–347. Search in Google Scholar

Hoseini S.M., Yousefi M., (2019). Beneficial effects of thyme (Thymus vulgaris) extract on oxytetracycline-induced stress response, immunosuppression, oxidative stress and enzymatic changes in rainbow trout (Oncorhynchus mykiss). Aquacult Nutr, 25: 298–309. Search in Google Scholar

Hoseinifar S.H., Mirvaghefi A., Merrifield D.L., (2011). The effects of dietary inactive brewer’s yeast Saccharomyces cerevisiae var. ellipsoideus on the growth, physiological responses and gut microbiota of juvenile beluga (Huso huso). Aquaculture, 318: 90–94. Search in Google Scholar

Hoseinifar S.H., Sun Y.-Z., Wang A., Zhou Z., (2018). Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Frontiers in microbiology, 9: 2429. Search in Google Scholar

Hoseinifar S.H., Yousefi S., Van Doan H., Ashouri G., Gioacchini G., Maradonna F., Carnevali O., (2021). Oxidative stress and antioxidant defense in fish: the implications of probiotic, prebiotic, and synbiotics. Reviews in fisheries science & aquaculture, 29: 198–217. Search in Google Scholar

Lee C.-S., Lim C., Webster C.D., (2015). Dietary nutrients, additives, and fish health. Wiley-Blackwell, NJ, USA. Search in Google Scholar

Li P., Gatlin D.M., (2003). Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for hybrid striped bass (Morone chrysops×M. saxatilis). Aquaculture, 219: 681–692. Search in Google Scholar

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265–275. Search in Google Scholar

Meena D., Das P., Kumar S., Mandal S., Prusty A., Singh S., Akhtar M., Behera B., Kumar K., Pal A., (2013). Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish Physiol. Biochem., 39: 431–457. Search in Google Scholar

Nhinh D.T., Le D.V., Van K.V., Huong Giang N.T., Dang L.T., Hoai T.D., (2021). Prevalence, virulence gene distribution and alarming the multidrug resistance of Aeromonas hydrophila associated with disease outbreaks in freshwater aquaculture, Antibiotics. Search in Google Scholar

Rauta P.R., Nayak B., Das S., (2012). Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunol. Lett., 148: 23–33. Search in Google Scholar

Rawling M., Leclercq E., Foey A., Castex M., Merrifield D., (2021). A novel dietary multi-strain yeast fraction modulates intestinal toll-like-receptor signalling and mucosal responses of rainbow trout (Oncorhynchus mykiss). PLoS One, 16: e0245021. Search in Google Scholar

Reverter M., Tapissier-Bontemps N., Lecchini D., Banaigs B., Sasal P., (2018). Biological and ecological roles of external fish mucus: A review. Fishes, 3: 41. Search in Google Scholar

Richard N., Costas B., Machado M., Fernández-Boo S., Girons A., Dias J., Corraze G., Terrier F., Marchand Y., Skiba-Cassy S., (2021). Inclusion of a protein-rich yeast fraction in rainbow trout plant-based diet: Consequences on growth performances, flesh fatty acid profile and health-related parameters. Aquaculture, 544: 737132. Search in Google Scholar

Singh S.K., Aravamudhan S., Armant O., Krüger M., Grabher C., (2014). Proteome dynamics in neutrophils of adult zebrafish upon chemically-induced inflammation. Fish Shellfish Immunol., 40: 217–224. Search in Google Scholar

Song Q., Xiao Y., Xiao Z., Liu T., Li J., Li P., Han F., (2021). Lysozymes in fish. J. Agric. Food Chem., 69: 15039–15051. Search in Google Scholar

Sutthi N., Thaimuangphol W., (2020). Effects of yeast (Saccharomyces cerevisiae) on growth performances, body composition and blood chemistry of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) under different salinity conditions. Iranian journal of fisheries sciences, 19: 1428–1446. Search in Google Scholar

Talwar C., Nagar S., Lal R., Negi R.K., (2018). Fish gut microbiome: Current approaches and future perspectives. Indian J. Microbiol., 58: 397–414. Search in Google Scholar

Torrecillas S., Montero D., Izquierdo M., (2014). Improved health and growth of fish fed mannan oligosaccharides: Potential mode of action. Fish Shellfish Immunol., 36: 525–544. Search in Google Scholar

Tovar-Ramírez D., Mazurais D., Gatesoupe J., Quazuguel P., Cahu C., Zambonino-Infante J., (2010). Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass (Dicentrarchus labrax) larvae. Aquaculture, 300: 142–147. Search in Google Scholar

Tovar-Ramıŕez D., Zambonino Infante J., Cahu C., Gatesoupe F.J., Vázquez-Juárez R., (2004). Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval development. Aquaculture, 234: 415–427. Search in Google Scholar

Woo P.T., Bruno D.W., (2011). Fish diseases and disorders. Volume 3: viral, bacterial and fungal infections. Cabi, FL, USA. Search in Google Scholar

Yano T., (1992). Assays of hemolytic complement activity. in: Stolen, J.S. (Ed.), Techniques in fish immunology. SOS publication, Fair haven, pp. 131–141. Search in Google Scholar

Yousefi M., Adineh H., Taheri Mirghaed A., Hoseini S.M., (2025). Co-supplementation of diet with Saccharomyces cerevisiae and thymol: Effects on growth performance, antioxidant and immunological responses of rainbow trout, Oncorhynchus mykiss. Animals, 15: 302. Search in Google Scholar

Zargham D., Emtiazjoo M., Sahafi H., Bashti T., Razmi K., (2011). The effect of probiotic Saccharomyces cerevisiae strain: ptcc5052 on growth parameters and survival of rainbow trout (Oncorhynchus mykiss) larvae. Advances in environmental biology, 5: 1393–1400. Search in Google Scholar

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Sciences de la vie, Biotechnologie, Zoologie, Médecine, Médecine vétérinaire