[
Bajić B., Vučurović D., Vasić Đ., Jevtić-Mučibabić R., Dodić S. (2023). Biotechnological Production of Sustainable Microbial Proteins from Agro-Industrial Residues and By-Products. Foods, 12: 107.
]Search in Google Scholar
[
Becker E.W. (2007). Micro-algae as a source of protein. Biotechnol. Adv., 25:207–210.
]Search in Google Scholar
[
Belhadj Slimen I., Yerou H., Ben Larbi M., M’Hamdi N., Najar T. (2023). Insects as an alternative protein source for poultry nutrition: a review. Front. Vet. Sci., 10.
]Search in Google Scholar
[
Bellezza Oddon S., Biasato I., Imarisio A., Pipan M., Dekleva D., Colombino E., Capucchio M.T., Meneguz M., Bergagna S., Barbero R., Gariglio M., Dabbou S., Fiorilla E., Gasco L., Schiavone A. (2021). Black soldier fly and yellow mealworm live larvae for broiler chickens: Effects on bird performance and health status. J. Anim. Physiol. Anim. Nutr. 105 Suppl., 1: 10–18.
]Search in Google Scholar
[
Bello A., Dersjant-Li Y., Korver D.R. (2020). Effects of dietary calcium and available phosphorus levels and phytase supplementation on performance, bone mineral density, and serum biochemical bone markers in aged white egg-laying hens. Poult. Sci., 99: 5792–5801.
]Search in Google Scholar
[
Belluco S., Losasso C., Maggioletti M., Alonzi C.C., Paoletti M.G., Ricci A. (2013). Edible Insects in a Food Safety and Nutritional Perspective: A Critical Review. Compr. Rev. Food Sci. Food Saf., 12: 296–313.
]Search in Google Scholar
[
Cadinu L.A., Barra P., Torre F., Delogu F., Madau F.A. (2020). Insect Rearing: Potential, Challenges, and Circularity. Sustainability, 12: 4567.
]Search in Google Scholar
[
Chodová D., Tůmová E. (2020). Insects in chicken nutrition. A review. Agron. Res., 8(2): 376–392.
]Search in Google Scholar
[
Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed (Text with EEA relevance). (2009).
]Search in Google Scholar
[
da-Silva W.C., Silva É.B.R. da Silva J.A.R. da Martorano L.G., Belo T.S., Sousa C.E.L., Camargo-Júnior R.N.C., Andrade R.L., Santos A.G. de S., Carvalho K.C. de Lobato A. dos S.M., Rodrigues T.C.G. de C., Araújo C.V. de, Lima J.S. de, Neves K.A.L., Silva L.K.X., Lourenço-Júnior J. de B. (2024). Nutritional Value of the Larvae of the Black Soldier Fly (Hermetia illucens) and the House Fly (Musca domestica) as a Food Alternative for Farm Animals—A Systematic Review. Insects, 15: 619.
]Search in Google Scholar
[
De Marco M., Martínez S., Hernandez F., Madrid J., Gai F., Rotolo L., Belforti M., Bergero D., Katz H., Dabbou S., Kovitvadhi A., Zoccarato I., Gasco L., Schiavone A. (2015). Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol., 209: 211–218.
]Search in Google Scholar
[
de Souza Vilela J., Andronicos N.M., Kolakshyapati M., Hilliar M., Sibanda T.Z., Andrew N.R., Swick R.A., Wilkinson S., Ruhnke I. (2021). Black soldier fly larvae in broiler diets improve broiler performance and modulate the immune system. Anim. Nutr., 7: 695–706.
]Search in Google Scholar
[
Dijkslag M.A., Kwakkel R.P., Martin-Chaves E., Alfonso-Carrillo C., Walvoort C., Navarro-Villa A. (2021). The effects of dietary calcium and phosphorus level, and feed form during rearing on growth performance, bone traits and egg production in brown egg-type pullets from 0 to 32 weeks of age. Poult. Sci., 100: 101130.
]Search in Google Scholar
[
Dumont E.R. (2010). Bone density and the lightweight skeletons of birds. Proc. Biol. Sci., 277: 2193–2198.
]Search in Google Scholar
[
Ellawidana D., Mutucumarana R.K., H.a, D.R., Magamage M.S. (2023). Nutritional Composition and Apparent Metabolizable Energy (AME) Value of Black Soldier Fly Larvae (Hermetia illucens L.) Full-Fat Meal for Broiler Chickens. Turk. J. Agric. - Food Sci. Technol., 11: 1825–1833.
]Search in Google Scholar
[
Fu C., Cheema W.A., Mobashar M., Shah A.A., Alqahtani M.M. (2024). Insects as Sustainable Feed: Enhancing Animal Nutrition and Reducing Livestock Environmental Impression. J. Anim. Physiol. Anim. Nutr., 109: 280-290.
]Search in Google Scholar
[
Hubert A. (2019). Industrial insect production as an alternative source of animal protein. C. R. Biol., Insects: Friends, foes, and models / Insectes : amis, ennemis et modèles, 342: 276–277.
]Search in Google Scholar
[
ISO 6869:2000 [WWW Document]. (2000). ISO. URL https://www.iso.org/standard/33707.html (accessed 7.1.25).
]Search in Google Scholar
[
Janssen R.H., Vincken J.-P., van den Broek L.A.M., Fogliano V., Lakemond C.M.M. (2017). Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem., 65: 2275–2278.
]Search in Google Scholar
[
Khan S., Shi X., Cai R., Shuai Z., Mao W., Khan I.M., Swelum A.A., Guo J. (2024). Effect of black soldier fly (Hermetia illucens) larvae meal and oil on the performance, biochemical profile, intestinal health and gut microbial dynamics in laying hens. Poult. Sci., 103: 104460.
]Search in Google Scholar
[
Khan S.H. (2018). Recent advances in role of insects as alternative protein source in poultry nutrition. J. Appl. Anim. Res., 46: 1144–1157.
]Search in Google Scholar
[
Kim W.K., Bloomfield S.A., Sugiyama, T., Ricke S.C. (2012). Concepts and methods for understanding bone metabolism in laying hens. Worlds Poult. Sci. J., 68: 71–82.
]Search in Google Scholar
[
Liu D., Veit H., Denbow D. (2004). Effects of long-term dietary lipids on mature bone mineral content, collagen, crosslinks, and prostaglandin E2 production in Japanese quail. Poult. Sci., 83(11): 1876–83
]Search in Google Scholar
[
Liu G., Kim W. (2023). The Functional Roles of Methionine and Arginine in Intestinal and Bone Health of Poultry: Review. Anim. Open Access J., 13(18): 2949
]Search in Google Scholar
[
Makkar H.P.S., Tran G., Heuzé V., Ankers P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol., 197: 1–33.
]Search in Google Scholar
[
Moniello G., Ariano A., Panettieri V., Tulli F., Olivotto I., Messina M., Randazzo B., Severino L., Piccolo G., Musco N., Addeo N.F., Hassoun G., Bovera F. (2019). Intestinal Morphometry, Enzymatic and Microbial Activity in Laying Hens Fed Different Levels of a Hermetia illucens Larvae Meal and Toxic Elements Content of the Insect Meal and Diets. Animals, 9: 86.
]Search in Google Scholar
[
Muszyński S., Tomaszewska E., Dobrowolski P., Kwiecień M., Wiącek D., Świetlicka I., Skibińska M., Szymańska-Chargot M., Orzeł J., Świetlicki M., Arczewska M., Szymanek M., Zhyla M., Hułas-Stasiak M., Rudyk H., Tomczyk-Warunek A. (2018). Analysis of bone osteometry, mineralization, mechanical and histomorphometrical properties of tibiotarsus in broiler chickens demonstrates a influence of dietary chickpea seeds (Cicer arietinum L.) inclusion as a primary protein source. PloS One, 13(12): e0208921.
]Search in Google Scholar
[
Novodworski J., Castilha L.D., Silva A.A. (2023). Insect meal in poultry feed: a potential protein source. Acta Sci. Anim. Sci., 45: e60317.
]Search in Google Scholar
[
Osiak-Wicha C., Tomaszewska E., Muszyński S., Dobrowolski P., Andres K., Schwarz T., Świetlicki M., Mielnik-Błaszczak M., Arciszewski M.B. (2023). Developmental changes in tibia and humerus of goose: morphometric, densitometric, and mechanical analysis. animal, 17: 100960.
]Search in Google Scholar
[
Osiak-Wicha C., Tomaszewska E., Muszyński S., Flis M., Świetlicki M., Arciszewski M.B. (2024). Comparative Analysis of Morphometric, Densitometric, and Mechanical Properties of Skeletal Locomotor Elements in Three Duck Species (Anatidae: Anatinae). Animals, 14: 2191.
]Search in Google Scholar
[
Paschalis E., Tatakis D., Robins S., Fratzl P., Manjubala I., Zoehrer R., Gamsjaeger S., Buchinger B., Roschger A., Phipps R., Boskey A., Dall’Ara E., Varga P., Zysset P., Klaushofer K., Roschger P. (2011). Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone, 49: 1232–1241.
]Search in Google Scholar
[
Popova T.L., Petkov, E., Ignatova M. (2020). Effect of Black Soldier Fly (Hermetia illucens) meals on the meat quality in broilers. Agric. Food Sci., 29: 177–188.
]Search in Google Scholar
[
Rath N.C., Huff G.R., Huff W.E., Balog J.M. (2000). Factors regulating bone maturity and strength in poultry. Poult. Sci., 79: 1024–1032.
]Search in Google Scholar
[
Rumpold B.A., Schlüter O.K. (2013). Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res., 57: 802–823.
]Search in Google Scholar
[
Salahuddin M., Abdel-Wareth A.A.A., Hiramatsu K., Tomberlin J.K., Luza D., Lohakare J. (2024). Flight toward Sustainability in Poultry Nutrition with Black Soldier Fly Larvae. Animals, 14: 510.
]Search in Google Scholar
[
Shah A.A., Totakul P., Matra M., Cherdthong A., Hanboonsong Y., Wanapat M. (2022). Nutritional composition of various insects and potential uses as alternative protein sources in animal diets. Anim. Biosci., 35: 317–331.
]Search in Google Scholar
[
Sogari G., Amato M., Biasato I., Chiesa S., Gasco L. (2019). The Potential Role of Insects as Feed: A Multi-Perspective Review. Animals, 9: 119.
]Search in Google Scholar
[
Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Kino Y., Maťoška V., Bauer P., Oyama F. (2017). Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci. Rep., 7: 6662.
]Search in Google Scholar
[
Tatara M.R., Śliwa E., Krupski W., Brodzki A., Pasternak K. (2006). Ornithine alpha-ketoglutarate increases mineralization and mechanical properties of tibia in turkeys. Bone, 39: 100–105.
]Search in Google Scholar
[
van Huis A. (2013). Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol., 58: 563–583.
]Search in Google Scholar
[
Veldkamp T., Bosch G. (2015). Insects: a protein-rich feed ingredient in pig and poultry diets. Anim. Front., 5: 45–50.
]Search in Google Scholar
[
Whitehead C.C. (2004). Overview of bone biology in the egg-laying hen. Poult. Sci., 83: 193–199.
]Search in Google Scholar
[
Whiteside M.A., Sage R., Madden J.R. (2015). Diet complexity in early life affects survival in released pheasants by altering foraging efficiency, food choice, handling skills and gut morphology. J. Anim. Ecol., 84: 1480–1489.
]Search in Google Scholar
[
Wise D.R., and Ewins A. (1980). The effects of dietary calcium concentration on pheasant breeder performance. Br. Poult. Sci., 21: 229–232.
]Search in Google Scholar
[
Yuan Y.V., Kitts D.D. (1992). Effect of dietary calcium intake and protein source on calcium utilization and bone biomechanics in the spontaneously hypertensive rat. J. Nutr. Biochem., 3: 452–460.
]Search in Google Scholar