[
Abisha R., Krishnani K.K., Sukhdhane K., Verma A.K., Brahmane M., Chadha N.K. (2022). Sustainable development of climate-resilient aquaculture and culture-based fisheries through adaptation of abiotic stresses: a review. J. Water Clim. Change, 13: 2671–2689.
]Search in Google Scholar
[
Adegbeye M.J., Elghandour M.M., Monroy J.C., Abegunde T.O., Salem A.Z., Barbabosa-Pliego A., Faniyi T.O. (2019). Potential influence of Yucca extract as feed additive on greenhouse gases emission for a cleaner livestock and aquaculture farming-A review. J. Clean. Prod., 239: 118074.
]Search in Google Scholar
[
Ahmed M., Shuai C., Ahmed M. (2023). Analysis of energy consumption and greenhouse gas emissions trend in China, India, the USA, and Russia. Int. J. Environ. Sci. Technol., 20: 2683–2698.
]Search in Google Scholar
[
Ahmed N., Cheung W.W., Thompson S., Glaser M. (2017). Solutions to blue carbon emissions: Shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Mar. Policy, 82: 68–75.
]Search in Google Scholar
[
Aldy J.E., Halem Z.M. (2024). The evolving role of greenhouse gas emission offsets in combating climate change. Rev. Environ. Econ. Policy, 18: 212–233.
]Search in Google Scholar
[
Alonso A.A., Álvarez-Salgado X.A., Antelo L.T. (2021). Assessing the impact of bivalve aquaculture on the carbon circular economy. J. Clean. Prod., 279: 123873.
]Search in Google Scholar
[
Alvarado-Ramírez L., Santiesteban-Romero B., Poss G., Sosa-Hernández J.E., Iqbal H.M., Parra-Saldívar R., Bonaccorso A.D., Melchor-Martínez E.M. (2023). Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. Front. Chem. Eng., 4: 1072761.
]Search in Google Scholar
[
Andrade H.J., Vega A., Martínez-Salinas A., Villanueva C., Jiménez-Trujillo J.A., Betanzos-Simon J.E., Pérez E., Ibrahim M., Sepúlveda L.C.J. (2024). The carbon footprint of livestock farms under conventional management and silvopastoral systems in Jalisco, Chiapas, and Campeche (Mexico). Front. Sustain. Food Syst., 8: 1363994.
]Search in Google Scholar
[
Angel D., Jokumsen A., Lembo G. (2019). Aquaculture production systems and environmental interactions. In: Organic Aquaculture, Lembo G., Mente E. (eds). Springer International Publishing, Cham, pp. 103–118.
]Search in Google Scholar
[
Anika O.C., Nnabuife S.G., Bello A., Okoroafor E.R., Kuang B., Villa R. (2022). Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review. Carbon Capture Sci. Technol., 5: 100072.
]Search in Google Scholar
[
Arifanti V.B., Kauffman J.B., Hadriyanto D., Murdiyarso D., Diana R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. For. Ecol. Manag., 432: 17–29.
]Search in Google Scholar
[
Arroyo V., Zyla K., Pacyniak G. (2017). New strategies for reducing transportation emissions and preparing for climate impacts. Fordham Urb. LJ., 44: 919.
]Search in Google Scholar
[
Aubin J., Papatryphon E., Van der Werf H.M.G., Chatzifotis S. (2009). Assessment of the environmental impact of carnivorous finfish production systems using life cycle assessment. J. Clean. Prod., 17: 354-361.
]Search in Google Scholar
[
Avadí A., Vázquez-Rowe I., Symeonidis A., Moreno-Ruiz E. (2020). First series of seafood datasets in ecoinvent: setting the pace for future development. Int. J. Life Cycle Assess., 25: 1333–1342.
]Search in Google Scholar
[
Avi-Yonah R.S., Uhlmann D.M. (2009). Combating global climate change: Why a carbon tax is a better response to global warming than cap and trade. Stan. Envtl. LJ., 28: 3.
]Search in Google Scholar
[
Awanthi M.G.G., Navaratne C.M. (2018). Carbon footprint of an organization: a tool for monitoring impacts on global warming. Procedia eng., 212: 729-735.
]Search in Google Scholar
[
Ayer N., Martin S., Dwyer R.L., Laurin L. (2016). Environmental performance of copper-alloy net-pens: life cycle assessment of Atlantic salmon grow-out in copper-alloy and nylon net-pens. Aquaculture, 453: 93–103.
]Search in Google Scholar
[
Babu S., Das A., Singh R., Mohapatra K.P., Kumar S., Rathore S.S., Yadav S.K., Yadav P., Ansari M.A., Panwar A.S., Wani O.A. (2023). Designing an energy efficient, economically feasible, and environmentally robust integrated farming system model for sustainable food production in the Indian Himalayas. Sustain. Food Technol., 1: 126–142.
]Search in Google Scholar
[
Badiola M., Mendiola D., Bostock J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquac. Eng., 51: 26–35.
]Search in Google Scholar
[
Bahida A., Chadli H., Nhhala H., Nhhala I., Wahbi M., Erraioui H. (2022). Carbon Footprint Assessment of a Seabass Farm on the Mediterranean Moroccan Coast. Croat. J. Fish., 80(4): 165-178.
]Search in Google Scholar
[
Baldwin R. (2008). Regulation lite: the rise of emissions trading. Law Financ. Mark. Rev., 2: 262–278.
]Search in Google Scholar
[
Basto-Silva C., Guerreiro I., Oliva-Teles A., Neto B. (2019). Life cycle assessment of diets for gilthead seabream (Sparus aurata) with different protein/carbohydrate ratios and fishmeal or plant feedstuffs as main protein sources. Int. J. Life Cycle Assess., 24: 2023–2034.
]Search in Google Scholar
[
Behera U.K., France J. (2016). Integrated farming systems and the livelihood security of small and marginal farmers in India and other developing countries. Adv. Agron., 138: 235–282.
]Search in Google Scholar
[
Bergman K., Henriksson P.J.G., Hornborg S., Troell M., Borthwick L., Jonell M., Philis G., Ziegler F. (2020). Recirculating aquaculture is possible without major energy tradeoff: life cycle assessment of warmwater fish farming in Sweden. Environ. Sci. Technol., 54: 16062–16070.
]Search in Google Scholar
[
Bijay S., Singh Y. (2017) Management and use efficiency of fertilizer nitrogen in production of cereals in India; issues and strategies. J. Indian Nitrogen Manag., 10: 149–162.
]Search in Google Scholar
[
Blanchard J.L., Watson R.A., Fulton E.A., Cottrell R.S., Nash K.L., Bryndum-Buchholz A., Büchner M., Carozza D.A., Cheung W.W., Elliott J., Davidson L.N. (2017). Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol., 1: 1240–1249.
]Search in Google Scholar
[
Bohnes F.A., Laurent A. (2019). LCA of aquaculture systems: methodological issues and potential improvements. Int. J. Life Cycle Assess., 24: 324–337.
]Search in Google Scholar
[
Bordignon F., Sturaro E., Trocino A., Birolo M., Xiccato G., Berton M. (2022). Comparative life cycle assessment of rainbow trout (Oncorhynchus mykiss) farming at two stocking densities in a low-tech aquaponic system. Aquaculture, 556: 738264.
]Search in Google Scholar
[
Bosma R.H., Nguyen T.H., Siahainenia A.J., Tran H.T., Tran H.N. (2016). Shrimp‐based livelihoods in mangrove silvo‐aquaculture farming systems. Rev Aquac 8: 43–60.
]Search in Google Scholar
[
Bouillon S., Borges A.V., Castañeda‐Moya E., Diele K., Dittmar T., Duke N.C., Kristensen E., Lee S.Y., Marchand C., Middelburg J.J., Rivera‐Monroy V.H. (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Glob. Biogeochem. Cycles, 22: 2007GB003052.
]Search in Google Scholar
[
Boyd C.E., McNevin A.A., Davis R.P. (2022). The contribution of fisheries and aquaculture to the global protein supply. Food Secur., 14: 805–827.
]Search in Google Scholar
[
Brennan L., Owende P. (2010). Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev., 14: 557–577.
]Search in Google Scholar
[
Broekhoff D., Gillenwater M., Colbert-Sangree T., Cage P. (2019). Securing climate benefit: a guide to using carbon offsets. Stockholm Environment Institute & Greenhouse Gas Management Institute, 60 pp.
]Search in Google Scholar
[
Buck B.H., Troell M.F., Krause G., Angel D.L., Grote B., Chopin T. (2018). State of the art and challenges for offshore integrated multi-trophic aquaculture (IMTA). Front. Mar. Sci., 5: 165.
]Search in Google Scholar
[
Buder I. (2020) Greenhouse gases. In: Encyclopedia of Sustainable Management, Idowu S., Schmidpeter R., Capaldi N et al. (eds). Springer International Publishing, Cham, pp. 1–8.
]Search in Google Scholar
[
Burford M.A., Thompson P.J., McIntosh R.P., Bauman R.H., Pearson D.C. (2004). The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232: 525–537.
]Search in Google Scholar
[
Camargo J.A., Alonso A., Salamanca A. (2005). Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere, 58: 1255–1267.
]Search in Google Scholar
[
Carlson M. (2023). Greenhouse gas emissions and carbon burial in a small pond. ISSN 1401-5765
]Search in Google Scholar
[
Carvalho A., Costa LC de O., Holanda M., Poersch L.H., Turan G. (2023). Influence of total suspended solids on the growth of the sea lettuce Ulva lactuca integrated with the Pacific white shrimp Litopenaeus vannamei in a biofloc system. Fishes, 8: 163.
]Search in Google Scholar
[
Castilla-Gavilán M., Guerra-García J.M., Hachero-Cruzado I., Herrera M. (2024). Understanding carbon footprint in sustainable land-based marine aquaculture: exploring production techniques. J. Mar. Sci. Eng., 12: 1192.
]Search in Google Scholar
[
Chang B.V., Liao C.S., Chang Y.T., Chao W.L., Yeh S.L., Kuo D.L., Yang C.W. (2019). Investigation of a farm-scale multitrophic recirculating aquaculture system with the addition of Rhodovulum sulfidophilum for milkfish (Chanos chanos) coastal aquaculture. Sustainability, 11: 1880.
]Search in Google Scholar
[
Chang C.C., Chang K.C., Lin W.C., Wu M.H. (2017). Carbon footprint analysis in the aquaculture industry: Assessment of an ecological shrimp farm. J. Clean. Prod., 168: 1101–1107.
]Search in Google Scholar
[
Cheah W.Y., Show P.L., Chang J.S., Ling T.C., Juan J.C. (2015). Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol., 184: 190–201.
]Search in Google Scholar
[
Chen Q., Li J., Xue S., Xu H., Jiang Z., Fang J., Mao Y. (2022). Strategies of carbon use and photosynthetic performance of the two seaweeds Gracilaria chouae and Gracilariopsis lemaneiformis under different conditions of the carbonate system. Algal Res., 64: 102713.
]Search in Google Scholar
[
Chen X., Samson E., Tocqueville A., Aubin J. (2015). Environmental assessment of trout farming in France by life cycle assessment: using bootstrapped principal component analysis to better define system classification. J. Clean. Prod. 87: 87–95.
]Search in Google Scholar
[
Chen Y., Xu C. (2020). Exploring new blue carbon plants for sustainable ecosystems. Trends Plant Sci., 25: 1067–1070.
]Search in Google Scholar
[
Choi Y.Y., Patel A.K., Hong M.E., Chang W.S., Sim S.J. (2019). Microalgae bioenergy with carbon capture and storage (BECCS): An emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour. Technol. Rep., 7: 100270.
]Search in Google Scholar
[
Chung I.K., Beardall J., Mehta S., Sahoo D., Stojkovic S. (2011). Using marine macroalgae for carbon sequestration: a critical appraisal. J. Appl. Phycol. 23: 877–886.
]Search in Google Scholar
[
Čížková H., Květ J., Comín FA., Laiho R., Pokorný J., Pithart D. (2013). Actual state of European wetlands and their possible future in the context of global climate change. Aquat. Sci., 75: 3–26.
]Search in Google Scholar
[
Correa J.P., Montalvo-Navarrete J.M., Hidalgo-Salazar M.A. (2019). Carbon footprint considerations for biocomposite materials for sustainable products: A review. J. Clean. Prod., 208: 785–794.
]Search in Google Scholar
[
Cortés A., Casillas-Hernández R., Cambeses-Franco C., Bórquez-López R., Magallón-Barajas F., Quadros-Seiffert W., Feijoo G., Moreira M.T. (2021). Eco-efficiency assessment of shrimp aquaculture production in Mexico. Aquaculture, 544: 737145.
]Search in Google Scholar
[
Coulter L., Canadell P., Dhakal S. (2007). Carbon reductions and offsets. The GCP Report for the ESSP, The Global Carbon Project, Canberra, 33 pp.
]Search in Google Scholar
[
Cunha M.E., Quental-Ferreira H., Parejo A., Gamito S., Ribeiro L., Moreira M., Monteiro I., Soares F., Pousão-Ferreira P. (2019). Understanding the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen ponds. Aquaculture, 512: 734297.
]Search in Google Scholar
[
Czerkauer-Yamu C., Frankhauser P. (2010). A multi-Scale (Multi-Fractal) approach for a systemic planning strategy from a regional to an architectural scale. In: REAL CORP 2010 (Competence Center of Urban and Regional Planning, Association for Promotion and Research of Urban Planning and Regional Development in the Information Society), Vienne, Austria (pp. http-programm).
]Search in Google Scholar
[
David L.H., Pinho S.M., Agostinho F., Costa J.I., Portella M.C., Keesman K.J., Garcia F. (2022). Sustainability of urban aquaponics farms: An emergy point of view. J. Clean. Prod., 331: 129896.
]Search in Google Scholar
[
Davis D.A. (2022). Feed and feeding practices in aquaculture. Woodhead publishing.
]Search in Google Scholar
[
da Silva M.G., Sampaio F.G., Taniwaki R.H., Barros N.O., Alvalá P.C., Bettanin V.C., Garofalo D.T., da Costa D.O., Ayer J.E.B., Gondek T.P., Packer A.P. (2021). Increase of methane emission linked to net cage fish farms in a tropical reservoir. Environ. Chall., 5: 100287.
]Search in Google Scholar
[
de Melo Júnior A.M., Kosten S., Duque V.L.D.C., Santos A.A., Amado A.M., Soranço L.C., Dreise J., Martins A.C., Nasário J., Barbosa A.P.D., Muzitano, I.S. (2025). Low carbon footprint of Nile tilapia farming with recirculation aquaculture. Resour. Conserv. Recycl., 217: 108201.
]Search in Google Scholar
[
Del Campo L.M., Ibarra P., Gutiérrez X., Takle H.R. (2010). Utilization of sludge from recirculation aquaculture systems. Nofima Marin, Norway, 63 pp.
]Search in Google Scholar
[
Diken G., Köknaroğlu H., Can İ. (2022). Small-scale rainbow trout cage farm in the inland waters of Turkey is sustainable in terms of carbon footprint (kg CO2e). Acta Aquat. Turc., 18: 131–145.
]Search in Google Scholar
[
Duarte C.M., Delgado-Huertas A., Marti E., Gasser B., San Martin I., Cousteau A., Neumayer F., Reilly-Cayten M., Boyce J., Kuwae T., Hori M. (2023). Carbon burial in sediments below seaweed farms. bioRxiv, 2023–01.
]Search in Google Scholar
[
Duarte C.M., Losada I.J., Hendriks I.E., Mazarrasa I., Marbà N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change, 3: 961–968.
]Search in Google Scholar
[
Duarte C.M., Wu J., Xiao X., Bruhn A., Krause-Jensen D. (2017). Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci., 4: 100.
]Search in Google Scholar
[
Duarte J.H., Fanka L.S., Costa J.A.V. (2016) Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresour. Technol., 214: 159–165.
]Search in Google Scholar
[
Dumay J., Clément N., Morançais M., Fleurence J. (2013). Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. Bioresour. Technol., 131: 21–27.
]Search in Google Scholar
[
Dunbar M.B., Malta E., Brunner L., Hughes A., Ratcliff J., Johnson M., Jacquemin B., Michel R., Cunha M., Oliveira G. and Ferreira H. (2020). Defining integrated multi-trophic aquaculture: a consensus. Aquac. Eur., 45: 22–27.
]Search in Google Scholar
[
Ebeling J.M., Timmons M.B., Bisogni J.J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257: 346–358.
]Search in Google Scholar
[
Edwards, P., 2013. Review of small-scale aquaculture: definitions, characterization, numbers. Enhancing the contribution of small-scale aquaculture to food security, poverty alleviation and socio-economic development, p.37.
]Search in Google Scholar
[
Elkins P., Baker T. (2001). Carbon taxes and carbon emissions trading. J. Econ. Surv., 15: 325–376.
]Search in Google Scholar
[
Emerenciano M.G.C., Fitzsimmons K., Rombenso A.N., Miranda-Baeza A., Martins G.B., Lazzari R., Fimbres-Acedo Y.E., Pinho S.M. (2021). Biofloc technology (BFT) in tilapia culture. In: Biology and Aquaculture of Tilapia. CRC Press, pp. 258–293.
]Search in Google Scholar
[
Emerenciano M.G.C., Khanjani M.H., Sharifinia M., Miranda-Baeza A. (2025). Could Biofloc Technology (BFT) Pave the Way Toward a More Sustainable Aquaculture in Line With the Circular Economy?. Aquac. Res., 2025(1): 1020045.
]Search in Google Scholar
[
Encarnação P. (2016). Functional feed additives in aquaculture feeds. In: Aquafeed Formulation. Elsevier, pp. 217–237.
]Search in Google Scholar
[
Faizullah M.M., Rajagopalsamy C., Ahilan B., Daniel N. (2019). Application of biofloc technology (BFT) in the aquaculture system. J. Entomol. Zool. Stud., 7: 204–212.
]Search in Google Scholar
[
Farmer A.M. (2018). Phosphorus polluter and resource of the future. In: Phosphate Pollution: A Global Overview of the Problem. IWA Publishing, pp. 35–55.
]Search in Google Scholar
[
Farrant D.N., Frank K.L., Larsen A.E. (2021). Reuse and recycle: Integrating aquaculture and agricultural systems to increase production and reduce nutrient pollution. Sci. Total Environ., 785: 146859.
]Search in Google Scholar
[
Fatima A., Singh V.K., Babu S., Singh R.K., Upadhyay P.K., Rathore S.S., Kumar B., Hasanain M., Parween H. (2023). Food production potential and environmental sustainability of different integrated farming system models in northwest India. Front. Sustain. Food Syst., 7: 959464.
]Search in Google Scholar
[
Feng J.C., Sun L., Yan J. (2023). Carbon sequestration via shellfish farming: A potential negative emissions technology. Renew. Sustain. Energy Rev., 171: 113018.
]Search in Google Scholar
[
Ferdouse F., Holdt S.L., Smith R., Murua P., Yang Z. (2018). The global status of seaweed production, trade and utilization. Food and Agriculture Organization of the United Nations, Rome, Italy.
]Search in Google Scholar
[
Ficke A.D., Myrick C.A., Hansen L.J. (2007). Potential impacts of global climate change on freshwater fisheries. Rev. Fish. Biol. Fish., 17: 581–613.
]Search in Google Scholar
[
Fitzgerald Jr W. (2000). Integrated mangrove forest and aquaculture systems in Indonesia. In: Mangrove-Friendly Aquaculture Proceedings. pp. 21-34.
]Search in Google Scholar
[
Folke C., Kautsky N. (1992). Aquaculture with its environment: prospects for sustainability. Ocean Coast. Manag., 17: 5–24.
]Search in Google Scholar
[
Gao G., Clare A.S., Chatzidimitriou E. (2018). Effects of ocean warming and acidification, combined with nutrient enrichment, on chemical composition and functional properties of Ulva rigida. Food Chem., 258: 71–78.
]Search in Google Scholar
[
Gao G., Gao L., Jiang M. (2021). The potential of seaweed cultivation to achieve carbon neutrality and mitigate deoxygenation and eutrophication. Environ. Res. Lett., 17: 014018.
]Search in Google Scholar
[
García García B., Rosique Jiménez C., Aguado-Giménez F., García García J. (2019) Life cycle assessment of seabass (Dicentrarchus labrax) produced in offshore fish farms: Variability and multiple regression analysis. Sustainability, 11: 3523.
]Search in Google Scholar
[
Garibay‐Valdez E., Martínez‐Córdova L.R., Vargas‐Albores F. (2023). The biofouling process: The science behind a valuable phenomenon for aquaculture. Rev. Aquac., 15: 976–990.
]Search in Google Scholar
[
Gasco L., Finke M., Van Huis A. (2018). Can diets containing insects promote animal health? J. Insects Food Feed, 4: 1–4.
]Search in Google Scholar
[
Gephart J.A., Henriksson P.J., Parker R.W. (2021). Environmental performance of blue foods. Nature, 597: 360–365.
]Search in Google Scholar
[
Giamouri E., Zisis F., Mitsiopoulou C. (2023). Sustainable strategies for greenhouse gas emission reduction in small ruminants farming. Sustainability, 15: 4118.
]Search in Google Scholar
[
Gill P. (2024). Skill Development & Entrepreneurship Project Report. PhD Thesis, Global University.
]Search in Google Scholar
[
Glencross B.D., Huyben D., Schrama J.W. (2020). The application of single-cell ingredients in aquaculture feeds-a review. Fishes, 5: 22.
]Search in Google Scholar
[
González-Riopedre M., Márquez L., Sieiro M.P., Vázquez U., Maroto J., Barcia R., Moyano F.J. (2013). Use of purified extracts from fish viscera as an enzyme additive in feeds for juvenile marine fish. New additives and ingredients in the formulation of aquafeeds. Centro Tecnologico del Mar-Fundacion (CETMAR), Spain.
]Search in Google Scholar
[
Guerra-García J.M., Hachero-Cruzado I., González-Romero P. (2016). Towards integrated multi-trophic aquaculture: lessons from caprellids (Crustacea: Amphipoda). PLoS One, 11: e0154776.
]Search in Google Scholar
[
Guttman L., Van Rijn J. (2012). Isolation of bacteria capable of growth with 2-methylisoborneol and geosmin as the sole carbon and energy sources. Appl. Environ. Microbiol., 78: 363–370.
]Search in Google Scholar
[
Ha T.T.T., van Dijk H., Bush S.R. (2012). Mangrove conservation or shrimp farmer’s livelihood? The devolution of forest management and benefit sharing in the Mekong Delta, Vietnam. Ocean Coast Manag., 69: 185–193.
]Search in Google Scholar
[
Hachero-Cruzado I., Betancor M.B., Coronel-Dominguez A.J. (2024). Assessment of full-fat Tenebrio molitor as feed ingredient for Solea senegalensis: effects on growth performance and lipid profile. Animals, 14: 595.
]Search in Google Scholar
[
Hamilton S. (2013). Assessing the role of commercial aquaculture in displacing mangrove forest. Bull. Mar. Sci. 89: 585–601.
]Search in Google Scholar
[
Hargreaves J.A. (2013). Biofloc production systems for aquaculture. Southern Regional Aquaculture Centre, pp. 1-11.
]Search in Google Scholar
[
He P., Davy D., Sciortino J. (2018). Impact of climate change on fisheries and aquaculture: Synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper No. 627, Rome, Italy.
]Search in Google Scholar
[
He B., Liu Y., Zeng L., Wang S., Zhang D., Yu Q. (2019). Product carbon footprint across sustainable supply chain. J. Clean. Prod., 241: 118320.
]Search in Google Scholar
[
Heisterkamp I.M., Schramm A., De Beer D., Stief P. (2016). Direct nitrous oxide emission from the aquacultured Pacific white shrimp (Litopenaeus vannamei). Appl. Environ. Microbiol., 82: 4028–4034.
]Search in Google Scholar
[
Heisterkamp I.M., Schramm A., Larsen L.H., Svenningsen N.B., Lavik G., de Beer D., Stief P. (2013). Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance. Environ. Microbiol., 15(7): 1943−1955.
]Search in Google Scholar
[
Henriksson P.J., Dickson M., Allah A.N. (2017). Benchmarking the environmental performance of best management practice and genetic improvements in Egyptian aquaculture using life cycle assessment. Aquaculture, 468: 53–59.
]Search in Google Scholar
[
Henriksson P.J., Heijungs R., Dao H.M., Phan L.T., de Snoo G.R., Guinée J.B. (2015). Product carbon footprints and their uncertainties in comparative decision contexts. PloS one, 10(3): e0121221.
]Search in Google Scholar
[
Hertwich E.G., Peters G.P. (2009). Carbon footprint of nations: A global, trade-linked analysis. Environ. Sci. Technol. 43: 6414–6420.
]Search in Google Scholar
[
Hilborn R., Banobi J., Hall S.J. (2018). The environmental cost of animal source foods. Front. Ecol. Environ., 16: 329–335.
]Search in Google Scholar
[
Hill R., Bellgrove A., Macreadie P.I. (2015). Can macroalgae contribute to blue carbon? An Australian perspective. Limnol. Oceanogr., 60: 1689–1706.
]Search in Google Scholar
[
Holanda M., Ravagnan E., Lara G., Santana G., Furtado P., Cardozo A., Wasielesky Jr W., Poersch L.H. (2023). Integrated multitrophic culture of shrimp Litopenaeus vannamei and tilapia Oreochromis niloticus in biofloc system: A pilot scale study. Front. Mar. Sci., 10: 1060846.
]Search in Google Scholar
[
Holmer M., Hansen P.K., Karakassis I., Borg J.A., Schembri P.J. (2008). Monitoring of environmental impacts of marine aquaculture. In: Aquaculture in the Ecosystem, Holmer M, Black K, Duarte CM et al. (eds). Springer Netherlands, Dordrecht, pp. 47–85.
]Search in Google Scholar
[
Hossain A., Senff P., Glaser M. (2022). Lessons for coastal applications of IMTA as a way towards sustainable development: A review Appl. Sci., 12: 11920.
]Search in Google Scholar
[
Hu Z., Lee J.W., Chandran K., Kim S., Sharma K., Brotto A.C., Khanal S.K. (2013). Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emission. Bioresour, Technol., 130: 314–320.
]Search in Google Scholar
[
Huang M., Zhou Y., Tian H., Pan S., Yang X., Gao Q., Dong S. (2024). Rapidly increased greenhouse gas emissions by Pacific white shrimp aquacultural intensification and potential solutions for mitigation in China. Aquaculture, 587: 740825.
]Search in Google Scholar
[
Huang Y., Ciais P., Goll D.S., Goll D., i. Galobart J.S., Cresto-Aleina F., Zhang H. (2020). The shift of phosphorus transfers in global fisheries and aquaculture. Nat. Commun., 11: 355.
]Search in Google Scholar
[
Ibrahim L. A., Abu-Hashim M., Shaghaleh H., Elsadek E., Hamad A. A. A., Alhaj Hamoud Y. (2023). A Comprehensive review of the multiple uses of water in aquaculture-integrated agriculture based on international and national experiences. Water, 15(2): 367.
]Search in Google Scholar
[
Ion I.V., Popescu F., Coman G., Frătița M. (2022). Heat requirement in an indoor recirculating aquaculture system. Energy Rep., 8: 11707–11714.
]Search in Google Scholar
[
Iribarren D., Moreira M.T., Feijoo G. (2012). Life cycle assessment of aquaculture feed and application to the turbot sector. Int. J. Environ. Res. 4: 837-848.
]Search in Google Scholar
[
Jacob A., Ashok B., Alagumalai A., Chyuan O.H., Le P.T. (2021). Critical review on third generation micro algae biodiesel production and its feasibility as future bioenergy for IC engine applications. Energy Convers. Manag., 228: 113655.
]Search in Google Scholar
[
Jaiswal K.K., Dutta S., Banerjee I., Pohrmen C.B., Kumar V. (2023). Photosynthetic microalgae– based carbon sequestration and generation of biomass in biorefinery approach for renewable biofuels for a cleaner environment. Biomass Convers. Biorefinery, 13: 7403–7421.
]Search in Google Scholar
[
Jiang Y., Zhang Z., Friess D.A., Li Y., Zhang Z., Xin R., Li J., Zhang Q., Li Y. (2024). Restoring mangroves lost by aquaculture offers large blue carbon benefits. One Earth, 8: 101149.
]Search in Google Scholar
[
Johnston D., Van Trong N., Tuan T.T., Xuan T.T. (2000). Shrimp seed recruitment in mixed shrimp and mangrove forestry farms in Ca Mau Province, Southern Vietnam. Aquaculture, 184: 89–104.
]Search in Google Scholar
[
Jones A.R., Alleway H.K., McAfee D., Reis-Santos P., Theuerkauf S.J., Jones R.C. (2022). Climate-friendly seafood: The potential for emissions reduction and carbon capture in marine aquaculture. BioScience, 72: 123–143.
]Search in Google Scholar
[
Jose D.M., Divya P.R. (2022). A review on aquaculture important fish Chanos chanos, Forsskål 1775, the milkfish. J. Aquac. Trop., 37: 1–26.
]Search in Google Scholar
[
Kalvakaalva R., Prior S.A., Smith M., Runion G.B., Ayipio E., Blanchard C., Wall N., Wells D., Hanson T.R., Higgins B.T. (2022). Direct greenhouse gas emissions from a pilot-scale aquaponics system. J. ASABE, 65(6): 1211-1223.
]Search in Google Scholar
[
Kalhoro H., Zhou J., Hua Y., Ng W.K., Ye L., Zhang J., Shao Q. (2018). Soy protein concentrate as a substitute for fish meal in diets for juvenile Acanthopagrus schlegelii: effects on growth, phosphorus discharge and digestive enzyme activity. Aquac. Res., 49: 1896–1906.
]Search in Google Scholar
[
Kao C.Y., Chen T.Y., Chang Y.B., Chiu T.W., Lin H.Y., Chen C.D., Chang J.S., Lin C.S. (2014). Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour. Technol. 166: 485–493.
]Search in Google Scholar
[
Keffer J.E., Kleinheinz G.T. (2002). Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. J. Ind. Microbiol. Biotechnol., 29: 275–280.
]Search in Google Scholar
[
Khanjani M.H., Eslami J., Emerenciano M.G.C. (2025). Wheat flour as carbon source on water quality, growth performance, hemolymph biochemical and immune parameters of Pacific white shrimp (Penaeus vannamei) juveniles in biofloc technology (BFT). Aquac. Rep., 40: 102623.
]Search in Google Scholar
[
Khanjani M.H., Mohammadi A., Emerenciano M.G.C. (2024a). Water quality in biofloc technology (BFT): an applied review for an evolving aquaculture. Aquac. Int., 32: 9321–9374.
]Search in Google Scholar
[
Khanjani M.H., Mozanzadeh M.T., Fóes G.K. (2022a). Aquamimicry system: a sutiable strategy for shrimp aquaculture – a review. Ann. Anim. Sci., 22(4): 1201-1210.
]Search in Google Scholar
[
Khanjani M.H., Sharifinia M., Akhavan-Bahabadi M., Emerenciano M.G.C. (2024b). Probiotics and phytobiotics as dietary and water supplements in biofloc aquaculture systems. Aquac. Nutr., 2024(1), p.3089887.
]Search in Google Scholar
[
Khanjani M.H., Zahedi S., Mohammadi A. (2022b). Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environ. Sci. Pollut. Res., 29: 67513–67531.
]Search in Google Scholar
[
Knowler D., Chopin T., Martínez‐Espiñeira R., Neori A., Nobre A., Noce A., Reid G. (2020). The economics of Integrated Multi‐Trophic Aquaculture: where are we now and where do we need to go? Rev. Aquac., 12: 1579–1594.
]Search in Google Scholar
[
Konstantinidis E., Perdikaris C., Gouva E., Nathanalides C., Bartzanas T., Anestis V., Ribaj S., Tzora A., Skoufos I. (2020). Assessing environmental impacts of sea bass cage farms in Greece and Albania using life cycle assessment. Int. J. Environ. Res., 14: 693-704.
]Search in Google Scholar
[
Kosten S., Almeida R.M., Barbosa I., Mendonça R., Muzitano I.S., Oliveira-Junior E.S., Vroom R.J., Wang H., Barros N. (2020). Better assessments of greenhouse gas emissions from global fish ponds needed to adequately evaluate aquaculture footprint. Sci. Total Environ., 748: 141247.
]Search in Google Scholar
[
Krause G., Le Vay L., Buck B.H., Costa-Pierce B.A., Dewhurst T., Heasman K.G., Nevejan N., Nielsen P., Nielsen K.N., Park K., Schupp M.F. (2022). Prospects of low trophic marine aquaculture contributing to food security in a net zero-carbon world. Front. Sustain. Food. Syst., 6: 875509.
]Search in Google Scholar
[
Krause-Jensen D., Lavery P., Serrano O., Marbà N., Masque P., Duarte C.M. (2018). Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biol. Lett., 14: 20180236.
]Search in Google Scholar
[
Kumar R., Monobrullah M., Bhatt B.P., Raizada A., Sen A.R., Samal S.K., Kumar M. (2023). Productivity, energy use efficiency, economics and CO2 emission from integrated fish-duck farming in floodplain wetland ecosystems of eastern India. Indian J. Fish., 70: 73-81.
]Search in Google Scholar
[
Kurniawan S., Yuliwati E., Ariyanto E., Morsin M., Sanudin R., Nafisah S. (2023). Greywater treatment technologies for aquaculture safety. J. King. Saud. Univ-Eng. Sci., 35: 327–334.
]Search in Google Scholar
[
Kuyumcu M.E., Tutumlu H., Yumrutaş R. (2016). Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank. Energy Convers. Manag., 121: 349–357.
]Search in Google Scholar
[
Lagutkina L.Y., Ponomarev S. (2018). Organic aquaculture as promising trend of the fish industry development. Agric. Biol., 53: 326–336.
]Search in Google Scholar
[
Lakra, W.S. and Krishnani, K.K., 2022. Circular bioeconomy for stress-resilient fisheries and aquaculture. In Biomass, biofuels, biochemicals (pp. 481-516). Elsevier.
]Search in Google Scholar
[
Lal R. (2008). Carbon sequestration. Philos. Trans. R Soc. B Biol. Sci., 363: 815–830.
]Search in Google Scholar
[
Lauderdale C.V., Aldrich H.C., Lindner A.S. (2004). Isolation and characterization of a bacterium capable of removing taste-and odor-causing 2-methylisoborneol from water. Water Res., 38: 4135–4142.
]Search in Google Scholar
[
Lee J., Taherzadeh O., Kanemoto K. (2021). The scale and drivers of carbon footprints in households, cities and regions across India. Glob. Environ. Change, 66: 102205.
]Search in Google Scholar
[
Le Guillard C., Bergé J.P., Donnay-Moreno C., Cornet J., Ragon J.Y., Fleurence J., Dumay J. (2023). Optimization of R-phycoerythrin extraction by ultrasound-assisted enzymatic hydrolysis: A comprehensive study on the wet seaweed Grateloupia turuturu. Mar. Drugs, 21: 213.
]Search in Google Scholar
[
Le Strat Y., Ruiz N., Fleurence J., Pouchus Y.F., Déléris P., Dumay J. (2022). Marine fungal abilities to enzymatically degrade algal polysaccharides, proteins and lipids: A review. J. Appl. Phycol., 34: 1131–1162.
]Search in Google Scholar
[
Legarda E.C., da Silva D., Miranda C.S., Pereira P.K., Martins M.A., Machado C., de Lorenzo M.A., Hayashi L., do Nascimento Vieira F. (2021). Sea lettuce integrated with Pacific white shrimp and mullet cultivation in biofloc impact system performance and the sea lettuce nutritional composition. Aquaculture, 534: 736265.
]Search in Google Scholar
[
Li Y., Zhang Q., Liu Y. (2018). Rabbitfish-an emerging herbivorous marine aquaculture species. In: Aquaculture in China, Gui J.F., Tang Q., Li Z., et al. (eds), 1st edn. Wiley, pp. 329–334.
]Search in Google Scholar
[
Li H., Zhou X., Gao L., Liang J., Liu H., Li Y., Chen L., Guo Y., Liang, S. (2025). Carbon footprint assessment and reduction strategies for aquaculture: A review. J. World Aquacult. Soc., 56(1): e13117.
]Search in Google Scholar
[
Liang Q., Yuan M., Xu L., Lio E., Zhang F., Mou H., Secundo F. (2022). Application of enzymes as a feed additive in aquaculture. Mar. Life. Sci. Technol., 4: 208–221.
]Search in Google Scholar
[
Little D., Edwards P. (2003). Integrated livestock-fish farming systems. Food & Agriculture Organization, Rome, Italy.
]Search in Google Scholar
[
Little D.C., Young J.A., Zhang W., Newton R.W., Al Mamun A., Murray F.J. (2018). Sustainable intensification of aquaculture value chains between Asia and Europe: A framework for understanding impacts and challenges. Aquaculture, 493: 338–354.
]Search in Google Scholar
[
Liu J., Gui F., Zhou Q., Cai H., Xu K., Zhao S. (2023). Carbon footprint of a large yellow croaker mariculture models based on life-cycle assessment. Sustainability, 15: 6658.
]Search in Google Scholar
[
Liu Y., Rosten T.W., Henriksen K., Hognes E.S., Summerfelt S., Vinci B. (2016). Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): Land-based closed containment system in freshwater and open net pen in seawater. Aquac. Eng., 71: 1–12.
]Search in Google Scholar
[
Liu Y., Zhang J., Wu W., Hognes E.S., Summerfelt S., Vinci B. (2022). Effects of shellfish and macro-algae IMTA in north China on the environment, inorganic carbon system, organic carbon system, and sea–air CO2 fluxes. Front. Mar. Sci., 9: 864306.
]Search in Google Scholar
[
Lovell H.C. (2010). Governing the carbon offset market. WIREs. Clim. Change, 1: 353–362.
]Search in Google Scholar
[
Lozano-Muñoz I., Castellaro G., Bueno G., Wacyk J. (2022). Herbivorous fish (Medialuna ancietae) as a sustainable alternative for nutrition security in Northern Chile. Sci. Rep., 12: 1619.
]Search in Google Scholar
[
Lu C., Yu Z., Zhang J., Cao P., Tian H., Nevison C. (2022). Century‐long changes and drivers of soil nitrous oxide (N2O) emissions across the contiguous United States. Glob. Change Biol., 28(7): 2505-2524.
]Search in Google Scholar
[
Lušić D., Tadić R. (2008). The Role of IFOAM AgriBioMediterraneo Organization in development of the organic agriculture on the Mediterranean. Agron. Glas. Glas. Hrvat. Agron. Druš., 70: 291–298.
]Search in Google Scholar
[
MacLeod M.J., Hasan M.R., Robb D.H., Mamun-Ur-Rashid M. (2020). Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep., 10: 11679.
]Search in Google Scholar
[
Majumdar P., Pegu C., Kumar B., Das B.K. (2018). Future aspects of integrated fish farming. Acta Sci. Agric., 212: 45–47.
]Search in Google Scholar
[
Manan H., Kasan N.A., Ikhwanuddin M., Kamaruzzan A.S., Jalilah M., Fauzan F., Suloma A., Amin-Safwan A. (2024). Biofloc technology in improving shellfish Aquaculture production – a review. Ann. Anim. Sci., 24: 983–993.
]Search in Google Scholar
[
Mao Y., Yang H., Zhou Y., Ye N., Fang J. (2009). Potential of the seaweed Gracilaria lemaneiformis for integrated multi-trophic aquaculture with scallop Chlamys farreri in North China. J. Appl. Phycol., 21: 649–656.
]Search in Google Scholar
[
Martins C.I.M., Eding E.H., Verdegem M.C., Heinsbroek L.T., Schneider O., Blancheton J.P., d’Orbcastel E.R., Verreth, J.A.J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng., 43: 83–93.
]Search in Google Scholar
[
Metcalf G.E., Weisbach D. (2009). The design of a carbon tax. Harv. Envtl. Rev., 33: 499.
]Search in Google Scholar
[
Miao Y., Yang L., Chen F., Chen J. (2024). Mapping the Landscape of Carbon-Neutral City Research: Dynamic Evolution and Emerging Frontiers. Sustainability, 16(16): 6733.
]Search in Google Scholar
[
Mirzoyan N., Tal Y., Gross A. (2010). Anaerobic digestion of sludge from intensive recirculating aquaculture systems. Aquaculture, 306: 1–6.
]Search in Google Scholar
[
Mitsch W.J., Bernal B., Nahlik A.M., Mander Ü., Zhang L., Anderson C.J., Jørgensen S.E., Brix, H. (2013). Wetlands, carbon, and climate change. Landsc. Ecol., 28: 583–597.
]Search in Google Scholar
[
Morris E.P., Flecha S., Figuerola J., Costas E., Navarro G., Ruiz J., Rodriguez P., Huertas, E. (2013). Contribution of Doñana wetlands to carbon sequestration. PloS One, 8: e71456.
]Search in Google Scholar
[
Mugwanya M., Dawood M.A., Kimera F., Sewilam H. (2021). Biofloc systems for sustainable production of economically important aquatic species: A review. Sustainability, 13: 7255.
]Search in Google Scholar
[
Mungkung R., Phillips M., Castine S., Beveridge M., Chaiyawannakarn N., Nawapakpilai S., Waite R. (2014). Exploratory analysis of resource demand and the environmental footprint of future aquaculture development using life cycle assessment. WorldFish, Malaysia.
]Search in Google Scholar
[
Munguti J.M., Kirimi J.G., Obiero K.O., Ogello E.O., Kyule D.N., Liti D.M., Musalia L.M. (2020). Aqua-feed wastes: Impact on natural systems and practical mitigations-A review. J. Agric. Sci., 13: 111.
]Search in Google Scholar
[
Murdiyarso D., Purbopuspito J., Kauffman J.B., Warren M.W., Sasmito S.D., Donato D.C., Manuri S., Krisnawati H., Taberima S., Kurnianto S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Change, 5: 1089–1092.
]Search in Google Scholar
[
Nations U. (2007). The world’s mangroves 1980-2005. FAO Forestry Paper, 153: 1–77.
]Search in Google Scholar
[
Nederlof M.A.J., Verdegem M.C.J., Smaal A.C., Jansen H.M. (2022). Nutrient retention efficiencies in integrated multi‐trophic aquaculture. Rev. Aquac., 14: 1194–1212.
]Search in Google Scholar
[
Nellemann C., Corcoran E. (2009). Blue carbon: the role of healthy oceans in binding carbon: a rapid response assessment. UNEP/Earthprint.
]Search in Google Scholar
[
Nhu T.T., Le Q.H., ter Heide P., Bosma R., Sorgeloos P., Dewulf J., Schaubroeck T. (2016). Inferred equations for predicting cumulative exergy extraction throughout cradle-to-gate life cycles of Pangasius feeds and intensive Pangasius grow-out farms in Vietnam. Resour. Conserv. Recycl., 115: 42–49.
]Search in Google Scholar
[
Nijdam D., Rood T., Westhoek H. (2012). The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy, 37: 760–770.
]Search in Google Scholar
[
Nilsson J., Martin M. (2022). Exploratory environmental assessment of large-scale cultivation of seaweed used to reduce enteric methane emissions. Sustain Prod. Consum., 30: 413–423.
]Search in Google Scholar
[
Nobre A.M., Robertson-Andersson D., Neori A., Sankar K. (2010). Ecological–economic assessment of aquaculture options: comparison between abalone monoculture and integrated multi-trophic aquaculture of abalone and seaweeds. Aquaculture, 306: 116–126.
]Search in Google Scholar
[
Ogello E., Schindler L., Chan C.Y., Tran N., Obiero K.O., Outa N., Muthoka M., Kyule D., Atieno J. (2024). Exploring future scenarios for advancing low emission development in Kenyan aquatic food systems, WorldFish, Penang, Malaysia. https://hdl.handle.net/10568/163447.
]Search in Google Scholar
[
Ogello E.O., Outa N.O., Obiero K.O., Kyule D.N., Munguti J.M. (2021). The prospects of biofloc technology (BFT) for sustainable aquaculture development. Sci. Afr., 14: e01053.
]Search in Google Scholar
[
Ogunkalu O. (2019). Effects of feed additives in fish feed for improvement of aquaculture. Eurasian J. Food Sci. Technol., 3: 49–57.
]Search in Google Scholar
[
Onyeaka H., Miri T., Obileke K., Hart A., Anumudu C., Al-Sharify Z.T. (2021). Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Sci. Technol., 1: 100007.
]Search in Google Scholar
[
Pacana A., Siwiec, D. (2024). Procedure for Aggregating Indicators of Quality and Life-Cycle Assessment (LCA) in the Product-Improvement Process. Processes, 12(4): 811.
]Search in Google Scholar
[
Pandey D., Agrawal M., Pandey J.S. (2011). Carbon footprint: current methods of estimation. Environ. Monit. Assess., 178: 135–160.
]Search in Google Scholar
[
Paramesh V., Kumar P., Shamim M., Ravisankar N., Arunachalam V., Nath A.J., Mayekar T., Singh R., Prusty A.K., Rajkumar R.S., Panwar A.S. (2022). Integrated farming systems as an adaptation strategy to climate change: Case studies from diverse agro-climatic zones of India. Sustainability, 14: 11629.
]Search in Google Scholar
[
Pendleton L., Donato D.C., Murray B.C., Crooks S., Jenkins W.A., Sifleet S., Craft C., Fourqurean J.W., Kauffman J.B., Marbà N., Megonigal P. (2012). Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE, 7: e43542.
]Search in Google Scholar
[
Perdikaris C., Paschos I. (2010). Organic aquaculture in Greece: a brief review. Rev. Aquac., 2: 102–105.
]Search in Google Scholar
[
Pereira A.G., Fraga-Corral M., Garcia-Oliveira P., Otero P., Soria-Lopez A., Cassani L., Cao H., Xiao J., Prieto M.A., Simal-Gandara J. (2022). Single-cell proteins obtained by circular economy intended as a feed ingredient in aquaculture. Foods, 11: 2831.
]Search in Google Scholar
[
Pereira L., Pardal M.A. (2024). Oceanography: relationships of the oceans with the continents, their biodiversity and the atmosphere. BoD–Books on Demand, University of Coimbra, Portugal.
]Search in Google Scholar
[
Philis G., Ziegler F., Gansel L.C., Jansen M.D., Gracey E.O., Stene A. (2019). Comparing life cycle assessment (LCA) of salmonid aquaculture production systems: Status and perspectives. Sustainability, 11: 2517.
]Search in Google Scholar
[
Pires J.C., Martins F.G., Alvim-Ferraz M.C., Simões M. (2011). Recent developments on carbon capture and storage: An overview. Chem. Eng. Res. Des., 89: 1446–1460.
]Search in Google Scholar
[
Poli M.A., Legarda E.C., de Lorenzo M.A., Pinheiro I., Martins M.A., Seiffert W.Q., do Nascimento Vieira F. (2019). Integrated multitrophic aquaculture applied to shrimp rearing in a biofloc system. Aquaculture, 511: 734274.
]Search in Google Scholar
[
Ponce M., Anguís V., Fernández-Díaz C. (2024). Assessing the role of ulvan as immunonutrient in Solea senegalensis. Fish Shellfish Immunol., 146: 109399.
]Search in Google Scholar
[
Pouil S., Besson M., Phocas F., Aubin J. (2024). Assessing the environmental impacts of conventional and organic scenarios of rainbow trout farming in France. J. Clean. Prod., 456: 142296.
]Search in Google Scholar
[
Primavera J.H. (2006). Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manag., 49: 531–545.
]Search in Google Scholar
[
Primavera J.H., Garcia L.M.B., Castanos M.T., Surtida M.B. (2000). Mangrove-friendly aquaculture: Proceedings of the workshop on mangrove-friendly aquaculture organized by the SEAFDEC Aquaculture Department, January 11-15, 1999, Iloilo City, Philippines. Aquaculture Department, Southeast Asian Fisheries Development Center.
]Search in Google Scholar
[
Quang Tran H., Van Doan H., Stejskal V. (2022). Environmental consequences of using insect meal as an ingredient in aquafeeds: A systematic view. Rev. Aquac., 14: 237–251.
]Search in Google Scholar
[
Radonjič G., Tompa S. (2018). Carbon footprint calculation in telecommunications companies– The importance and relevance of scope 3 greenhouse gases emissions. Renew. Sustain. Energy Rev., 98: 361-375.
]Search in Google Scholar
[
Rather M.A., Ahmad I., Shah A., Hajam Y.A., Amin A., Khursheed S., Ahmad I., Rasool S. (2024). Exploring opportunities of Artificial Intelligence in aquaculture to meet increasing food demand. Food Chem., X: 101309.
]Search in Google Scholar
[
Raul C., Pattanaik S.S., Prakash S., Sreedharan K., Bharti S. (2020). Greenhouse gas emissions from aquaculture systems. World Aquac., 57: 57–61.
]Search in Google Scholar
[
Ray N.E., Maguire T.J., Al-Haj A.N., Henning M.C., Fulweiler, R.W. (2019). Low greenhouse gas emissions from oyster aquaculture. Environ. Sci. Technol., 53(15): 9118-9127.
]Search in Google Scholar
[
Richards D.R., Friess D.A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci., 113: 344–349.
]Search in Google Scholar
[
Robb D.H.F., Crampton V.O. (2013). On-farm feeding and feed management: perspectives from the fish feed industry. In: On-Farm Feeding and Feed Management in Aquaculture, Hasan M.R., New M.B. (eds). FAO Fisheries and Aquaculture Technical Paper No. 583. Rome, FAO, pp. 489–518.
]Search in Google Scholar
[
Robb D.H., MacLeod M., Hasan M.R., Soto D. (2017). Greenhouse gas emissions from aquaculture: a life cycle assessment of three Asian systems. FAO Fisheries and Aquaculture Technical Paper No. 609, FAO, Rome, Italy.
]Search in Google Scholar
[
Rong F., Liu H., Zhu J., Qin G., (2025). Carbon footprint of shrimp (Litopenaeus vannamei) cultured in recirculating aquaculture systems (RAS) in China. J. Clean. Prod., 145606.
]Search in Google Scholar
[
Rutegwa M., Gebauer R., Veselỳ L., Regenda J., Strunecký O., Hejzlar J., Drozd B. (2019). Diffusive methane emissions from temperate semi-intensive carp ponds. Aquac. Environ. Interact., 11: 19–30.
]Search in Google Scholar
[
Sabu E.A. (2022). Bioremediation of aquaculture effluent through the development of marine bacteria and phytoplankton consortia. PhD Thesis, Goa University.
]Search in Google Scholar
[
Sah, D., Devakumar A.S. (2018). The carbon footprint of agricultural crop cultivation in India. Carbon Manag., 9(3): 213-225.
]Search in Google Scholar
[
Sahoo A.K., Pattanaik P., Haldar D., Mohanty U.C. (2019). Integrated farming system: A climate smart agriculture practice for food security and environment resilience. Int. J. Trop. Agric., 37: 193–201.
]Search in Google Scholar
[
Santos A.A.O., Aubin J., Corson M.S., Valenti W.C., Camargo A.F. (2015). Comparing environmental impacts of native and introduced freshwater prawn farming in Brazil and the influence of better effluent management using LCA. Aquaculture, 444: 151–159.
]Search in Google Scholar
[
Sapcota D., Begum K. (2022). Integrated duck farming. In: Duck Production and Management Strategies Jalaludeen A., Churchil R.R., Baéza E. (eds). Springer Nature Singapore, Singapore, pp. 247–264.
]Search in Google Scholar
[
Sathoria P., Roy B. (2022). Sustainable food production through integrated rice-fish farming in India: A brief review. Renew. Agric. Food Syst., 37: 527–535.
]Search in Google Scholar
[
Schmittou H.R. (2024). Cage culture. In: Tilapia. CRC Press, pp. 313–346.
]Search in Google Scholar
[
Schoor M., Arenas-Salazar A.P., Torres-Pacheco I., Guevara-González R.G., Rico-García E. (2023). A review of sustainable pillars and their fulfillment in agriculture, aquaculture, and aquaponic production. Sustainability, 15: 7638.
]Search in Google Scholar
[
Seneviratne S.I., Rogelj J., Séférian R., et al (2018). The many possible climates from the Paris Agreement’s aim of 1.5°C warming. Nature, 558: 41–49.
]Search in Google Scholar
[
Shepherd C.J., Monroig O., Tocher D.R. (2017). Future availability of raw materials for salmon feeds and supply chain implications: The case of Scottish farmed salmon. Aquaculture, 467: 49–62.
]Search in Google Scholar
[
Shree V., Nautiyal H., Goel V. (2021). Carbon footprint estimation for academic building in India. LCA Based Carbon Footprint Assessment, pp.55-70.
]Search in Google Scholar
[
Sicuro B. (2019). An overview of organic aquaculture in Italy. Aquaculture, 509: 134–139.
]Search in Google Scholar
[
Siikamäki J., Sanchirico J.N., Jardine S. (2012). Blue carbon: global options for reducing emissions from the degradation and development of coastal ecosystems. Washington, DC: Resources for the Future. https://doi.org/10.1073/pnas.1200519109.
]Search in Google Scholar
[
Silvenius F., Grönroos J., Kankainen M., Kurppa S., Mäkinen T., Vielma J. (2017). Impact of feed raw material to climate and eutrophication impacts of Finnish rainbow trout farming and comparisons on climate impact and eutrophication between farmed and wild fish. J. Clean. Prod., 164: 1467–1473.
]Search in Google Scholar
[
Sirakov I., Velichkova K., Slavcheva-Sirakova D. (2019). The effect of yarrow (Achillea millefolium) supplemented diet on growth performance, biochemical blood parameters and meat quality of rainbow trout (Oncorhynchus mykiss w.) and growth of lettuce (Lactuca sativa) cultivated in aquaponic recirculation system. J. Hyg. Eng. Des., 28-32.
]Search in Google Scholar
[
Soares D.C., Henry-Silva G.G. (2019). Emission and absorption of greenhouse gases generated from marine shrimp production (Litopeneaus vannamei) in high salinity. J. Clean. Prod., 218: 367–376.
]Search in Google Scholar
[
Soeder D.J. (2021). Fossil fuels and climate change. In: Fracking and the Environment. Springer International Publishing, Cham, pp. 155–185.
]Search in Google Scholar
[
Sogari G., Oddon S.B., Gasco L., Van Huis A., Spranghers T., Mancini S. (2023). Recent advances in insect-based feeds: from animal farming to the acceptance of consumers and stakeholders. Animal, 17: 100904.
]Search in Google Scholar
[
Song J., Wang Y., Huang L., Peng Y., Tan K., Tan K. (2024). The effects of bivalve aquaculture on carbon storage in the water column and sediment of aquaculture areas. Sci. Total Environ., 937: 173538.
]Search in Google Scholar
[
Song X., Liu Y., Pettersen J.B., Brandão M., Ma X., Røberg S., Frostell B. (2019). Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China. J. Ind. Ecol., 23: 1077–1086.
]Search in Google Scholar
[
Strand Ø., Jansen H.M., Jiang Z., Sharma N., Pallavicini A., Rosani U. (2019). Goods and services of marine bivalves. In: Perspectives on Bivalves Providing Regulating Services in Integrated Multi-Trophic Aquaculture Aad C.S., Joao G.F., et al. (eds). pp. 209–230.
]Search in Google Scholar
[
Su Z., Qiu G., Yang P., Yang H., Liu W., Tan L., Zhang L., Sun D., Huang J., Tang K.W. (2025). Conversion of earthen aquaculture ponds to integrated mangrove-aquaculture systems significantly reduced the emissions of CH4 and N2O. J. Hydol., 652: 132692.
]Search in Google Scholar
[
Subasinghe R., Soto D., Jia J. (2009). Global aquaculture and its role in sustainable development. Rev. Aquac., 1: 2–9.
]Search in Google Scholar
[
SubhashreeDevasena S., Padmavathy P., Manimekalai D., Rani V. (2022). Carbon footprint in aquaculture–A review. J. Res. Environ. Earth Sci., 8: 64-73.
]Search in Google Scholar
[
Sun Y., Hou H., Dong D., Zhang J., Yang X., Li X., Song X. (2023). Comparative life cycle assessment of whiteleg shrimp (Penaeus vannamei) cultured in recirculating aquaculture systems (RAS), biofloc technology (BFT) and higher-place ponds (HPP) farming systems in China. Aquaculture, 574: 739625.
]Search in Google Scholar
[
Tamburini E., Fano E.A., Castaldelli G., Turolla E. (2019). Life cycle assessment of oyster farming in the Po Delta, Northern Italy. Resources, 8: 170.
]Search in Google Scholar
[
Tewatia R.K., Chanda T.K. (2017). Trends in fertilizer nitrogen production and consumption in India. In: The Indian Nitrogen Assessment. Elsevier, pp. 45–56.
]Search in Google Scholar
[
Thomas N., Lucas R., Bunting P., Hardy A., Rosenqvist A., Simard M. (2017). Distribution and drivers of global mangrove forest change, 1996–2010. PloS One, 12: e0179302.
]Search in Google Scholar
[
Tilman D., Clark M. (2014). Global diets link environmental sustainability and human health. Nature, 515: 518–522.
]Search in Google Scholar
[
Tiwari T., Kaur G.A., Singh P.K., Balayan S., Mishra A., Tiwari A. (2024). Emerging bio-capture strategies for greenhouse gas reduction: Navigating challenges towards carbon neutrality. Sci. Total Environ., 929: 172433.
]Search in Google Scholar
[
Tolentino-Pablico G., Bailly N., Froese R., Elloran C. (2009). Seaweeds preferred by herbivorous fishes. In: Nineteenth International Seaweed Symposium, Borowitzka M.A., Critchley A.T., Kraan S., et al. (eds). Springer Netherlands, Dordrecht, pp. 483–488.
]Search in Google Scholar
[
Tripathi S., Hussain T. (2022). Water and wastewater treatment through ozone-based technologies. In: Development in Wastewater Treatment Research and Processes. Elsevier, pp. 139–172.
]Search in Google Scholar
[
Tsai W-H. (2020). Carbon emission reduction-Carbon tax, carbon trading, and carbon offset. Energies, 13: 6128.
]Search in Google Scholar
[
Tukker A., Pollitt H., Henkemans M. (2020). Consumption-based carbon accounting: sense and sensibility. Clim. Policy, 20: S1–S13.
]Search in Google Scholar
[
Valdovinos-García E.M., Barajas-Fernández J., Olán-Acosta M de los Á., Petriz-Prieto M.A., Guzmán-López A., Bravo-Sánchez M.G. (2020). Techno-economic study of CO2 capture of a thermoelectric plant using microalgae (Chlorella vulgaris) for production of feedstock for bioenergy. Energies 13: 413.
]Search in Google Scholar
[
Van Kessel M.A.H.J., Mesman R.J., Arshad A., Metz J.R., Spanings F.T., van Dalen S.C., van Niftrik L., Flik G., Wendelaar Bonga S.E., Jetten M.S., Klaren P.H. (2016). Branchial nitrogen cycle symbionts can remove ammonia in fish gills. Environ. Microbiol. Rep., 8: 590–594.
]Search in Google Scholar
[
Vasdravanidis C., Alvanou M.V., Lattos A., Papadopoulos D.K., Chatzigeorgiou I., Ravani M., Liantas G., Georgoulis I., Feidantsis K., Ntinas G.K., Giantsis, I.A. (2022). Aquaponics as a promising strategy to mitigate impacts of climate change on rainbow trout culture. Animals, 12: 2523.
]Search in Google Scholar
[
Velichkova K., Sirakov I., Valkova E. (2020). The effect of sweet flag (Acorus calamus L.) supplemented diet on growth performance, biochemical blood parameters and meat quality of rainbow trout (Oncorhynchus mykiss W.) and growth of lettuce (Lactuca sativa L.) cultivated in aquaponic recirculation system. Aquac. Aquar. Conserv. Legis., 13: 3840–3848.
]Search in Google Scholar
[
Verma A.K., Chandrakant M.H., John V.C., Peter R.M., John I.E. (2023). Aquaponics as an integrated agri-aquaculture system (IAAS): Emerging trends and future prospects. Technol. Forecast. Soc. Change, 194: 122709.
]Search in Google Scholar
[
Wallenius A.J., Dalcin Martins P., Slomp C.P., Jetten M.S. (2021). Anthropogenic and environmental constraints on the microbial methane cycle in coastal sediments. Front. Microbiol., 12: 631621.
]Search in Google Scholar
[
Wang C., Jin Y., Ji C., Zhang N.A., Song M., Kong D., Liu S., Zhang X., Liu X., Zou J., Li S. (2018a). An additive effect of elevated atmospheric CO2 and rising temperature on methane emissions related to methanogenic community in rice paddies. Agric. Ecosyst. Environ., 257: 165–174.
]Search in Google Scholar
[
Wang L., Wang Y., Du H., Zuo J., Li R.Y.M., Zhou Z., Bi F., Garvlehn M.P. (2019). A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study. Appl. Energy, 249: 37–45.
]Search in Google Scholar
[
Wang S., Wan L., Li T., Luo B., Wang C. (2018b). Exploring the effect of cap-and-trade mechanism on firm’s production planning and emission reduction strategy. J. Clean. Prod., 172: 591–601.
]Search in Google Scholar
[
Wang X., Broch O.J., Forbord S., Handå A., Skjermo J., Reitan K.I., Vadstein O., Olsen Y. (2014). Assimilation of inorganic nutrients from salmon (Salmo salar) farming by the macroalgae (Saccharina latissima) in an exposed coastal environment: implications for integrated multi-trophic aquaculture. J. Appl. Phycol., 26: 1869–1878.
]Search in Google Scholar
[
Wright A.C., Fan Y., Baker G.L. (2018). Nutritional value and food safety of bivalve molluscan shellfish. J. Shellfish Res., 37: 695–708.
]Search in Google Scholar
[
Wright L.A., Kemp S., Williams I. (2011). Carbon footprinting’: towards a universally accepted definition. Carbon Manag., 2: 61–72.
]Search in Google Scholar
[
Wu P., Xia B., Zhao X. (2014). The importance of use and end-of-life phases to the life cycle greenhouse gas (GHG) emissions of concrete–a review. Renew. Sustain. Energy Rev., 37: 360–369.
]Search in Google Scholar
[
Yang L., An D., Cui Y., Jia X., Yang D., Li W., Wang Y., Wu, L. (2024). Carbon footprint of fresh sea cucumbers in China: Comparison of three aquaculture technologies. J. Clean. Prod., 469: 143249.
]Search in Google Scholar
[
Yang P., Bastviken D., Lai D.Y.F., Jin B.S., Mou X.J., Tong C., Yao Y.C. (2017). Effects of coastal marsh conversion to shrimp aquaculture ponds on CH4 and N2O emissions. Estuar. Coast Shelf Sci., 199: 125–131.
]Search in Google Scholar
[
Yang P., Lai D.Y., Yang H., Lin Y., Tong C., Hong Y., Tian Y., Tang C., Tang K.W. (2022). Large increase in CH4 emission following conversion of coastal marsh to aquaculture ponds caused by changing gas transport pathways. Water Res., 222: 118882.
]Search in Google Scholar
[
Yang Y., Zhao T., Wang Y., Shi Z. (2015). Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012. Environ. Impact Assess. Rev., 55: 45–53.
]Search in Google Scholar
[
Yuan J., Xiang J., Liu D., Kang H., He T., Kim S., Lin Y., Freeman C. and Ding W. (2019). Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nat. Clim. Change., 9: 318–322.
]Search in Google Scholar
[
Zajdband, A.D., 2011. Integrated agri-aquaculture systems. In Genetics, biofuels and local farming systems (pp. 87-127). Dordrecht: Springer Netherlands.
]Search in Google Scholar
[
Zhang R., Chen T., Wang Y., Short M. (2023). Systems approaches for sustainable fisheries: A comprehensive review and future perspectives. Sustain. Prod. Consum., 41: 242-252.
]Search in Google Scholar
[
Zhang W., Li J., Li G., Guo S. (2020a). Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China. Energy, 196: 117117.
]Search in Google Scholar
[
Zhang Y., Lu R., Qin C., Nie G. (2020b). Precision nutritional regulation and aquaculture. Aquac. Rep., 18: 100496.
]Search in Google Scholar
[
Zhang Z., Liu H., Jin J., Zhu X., Han D., Xie S. (2024). Towards a low-carbon footprint: Current status and prospects for aquaculture. Water Biol. Secur., 3: 100290.
]Search in Google Scholar
[
Zhang Y., Tang K.W., Yang P., Yang H., Tong C., Song C., Tan L., Zhao G., Zhou X., Sun, D. (2022). Assessing carbon greenhouse gas emissions from aquaculture in China based on aquaculture system types, species, environmental conditions and management practices. Agric. Ecosyst. Environ., 338: 108110.
]Search in Google Scholar
[
Zhao D., Pan L., Huang F., Wang C., Xu W. (2016). Effects of different carbon sources on bioactive compound production of biofloc, immune response, antioxidant level, and growth performance of Litopenaeus vannamei in zero‐water exchange culture tanks. J. World Aquac. Soc., 47: 566–576.
]Search in Google Scholar
[
Zhao F., Wu J. (2024). The Role of Shellfish Aquaculture in Coastal Habitat Restoration. Int. J. Mar. Sci., 14: 275.
]Search in Google Scholar
[
Zimmermann S., Kiessling A., Zhang J. (2023). The future of intensive tilapia production and the circular bioeconomy without effluents: Biofloc technology, recirculation aquaculture systems, BIO‐RAS, partitioned aquaculture systems and integrated multitrophic aquaculture. Rev. Aquac., 15: 22–31.
]Search in Google Scholar