Accès libre

Dietary administration of Lactobacillus reuteri and Lactobacillus plantarum reduces whole body oxidative stress and increases immune response, digestive enzyme, growth performance and resistance of zebrafish (Danio rerio) against Aeromonas hydrophila infection

À propos de cet article

Citez

Abdel-Latif H.M.R., Chaklader M.R., Shukry M., Ahmed H.A., Khallaf M.A. (2023). A multispecies probiotic modulates growth, digestive enzymes, immunity, hepatic antioxidant activity, and disease resistance of Pangasianodon hypophthalmus fingerlings. Aquaculture, 563: 738948. Search in Google Scholar

Abdel-Latif H.M.R., Yilmaz E., Dawood M.A.O., Ringø E., Ahmadifar E., Yilmaz S. (2022) Shrimp vibriosis and possible control measures using probiotics, postbiotics, prebiotics, and synbiotics: A review. Aquaculture, 551: 737951. Search in Google Scholar

Abumourad I.M.K., Abbas W.T., Awaad E.S., Authman M.M.N., El-Shafei K., Sharaf O.M., Ibrahim G.A., Sadek Z.I., El-Sayed H.S. (2013). Evaluation of Lactobacillus plantarum as a probiotic in aquaculture: emphasis on growth performance and innate immunity. J. Appl. Sci. Res., 9: 572–582. Search in Google Scholar

Ahmadifar M., Esfahani D.E., Ahmadifar E., Sheikhzadeh N., Mood S.M., Moradi S.Z. (2023). Combined effects of Spirulina platensis and Pediococcus acidilactici on the growth performance, digestive enzyme activity, antioxidative status, and immune genes in zebrafish. Ann. Anim. Sci., 23: 1159–1167. Search in Google Scholar

Ahmadifar E., Sheikhzadeh N., Roshanaei K., Dargahi N., Faggio C. (2019). Can dietary ginger (Zingiber officinale) alter biochemical and immunological parameters and gene expression related to growth, immunity and antioxidant system in zebrafish (Danio rerio)? Aquaculture, 507: 341–348. Search in Google Scholar

Andani H.R.R., Tukmechi A., Meshkini S., Sheikhzadeh N. (2012). Antagonistic activity of two potential probiotic bacteria from fish intestines and investigation of their effects on growth performance and immune response in rainbow trout (Oncorhynchus mykiss). J. Appl. Ichthyol., 28: 728–734. Search in Google Scholar

Arani M.M., Salati A.P., Keyvanshokooh S., Safari O. (2021). The effect of Pediococcus acidilactici on mucosal immune responses, growth, and reproductive performance in zebrafish (Danio rerio). Fish Physiol. Biochem., 47: 153–162. Search in Google Scholar

Bairagi A., Sarkar Ghosh K., Sen S.K., Ray A.K. (2004). Evaluation of the nutritive value of Leucaena leucocephala (italic) leaf meal, inoculated with fish intestinal bacteria Bacillus subtilis (italic) and Bacillus circulans (italic) in formulated diets for rohu, Labeo rohita (Hamilton) fingerlings. Aquac. Res., 35: 436–446. Search in Google Scholar

Benzie I.F.F., Strain J.J. (1996). Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem., 239: 70–76. Search in Google Scholar

Bernfeld P. (1955). Amylase a and b. In: Colowick S.P., Kaplan N.O. (eds), Methods in Enzymology. Academic Press, pp. 149–158. Search in Google Scholar

Bradford M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem., 72: 248–254. Search in Google Scholar

Bulow L., Mosbach K. (1987). The expression in E. coli of a polymeric gene coding for an esterase mimic catalyzing the hydrolysis of pnitrophenyl esters. FEBS Lett., 210: 147–152. Search in Google Scholar

Carnevali O., Avella M.A., Gioacchini G. (2013). Effects of probiotic administration on zebrafish development and reproduction. Gen. Comp. Endocrinol., 188: 297–302. Search in Google Scholar

Dawood M.A., Koshio S., Abdel‐Daim M.M., Van Doan H. (2019). Probiotic application for sustainable aquaculture. Rev. Aquac., 11: 907–924. Search in Google Scholar

Dawood M.A., Koshio S., Ishikawa M., Yokoyama S., El Basuini M.F., Hossain M.S., ... & Moss A.S. (2016). Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol., 49: 275–285. Search in Google Scholar

El-Saadony M.T., Alagawany M., Patra A.K., Kar I., Tiwari R., Dawood M.A., ... & Abdel-Latif H.M.R. (2021). The functionality of probiotics in aquaculture: An overview. Fish Shellfish Immunol., 117: 36–52. Search in Google Scholar

Dell’Anno M., Callegari M.L., Reggi S., Caprarulo V., Giromini C., Spalletta A., Coranelli S., Sgoifo Rossi C.A., Rossi L. (2021). Lactobacillus plantarum and Lactobacillus reuteri as functional feed additives to prevent diarrhoea in weaned piglets. Animals, 11: 1766. Search in Google Scholar

Gioacchini G., Maradonna F., Lombardo F., Bizzaro D., Olivotto I., Carnevali O. (2010). Increase of fecundity by probiotic administration in zebrafish (Danio rerio). Reproduction, 140: 953–959. Search in Google Scholar

Giri S.S., Kim H.J., Kim S.G., Kim S.W., Kwon J., Lee S.B., Woo K.J., Jung W.J., Kim M.J., Sukumaran V., Park S.C. (2021). Effects of dietary Lactiplantibacillus plantarum subsp. plantarum L7, alone or in combination with Limosilactobacillus reuteri P16, on growth, mucosal immune responses, and disease resistance of Cyprinus carpio. Prob. Antimicrob. Prot., 13: 1747–1758. Search in Google Scholar

Giri S.S., Yun S., Jun J.W., Kim H.J., Kim S.G., Kang J.W., Kim S.W., Han S.J., Sukumaran V., Park S.C. (2018) Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against waterborne lead toxicity in Cyprinus carpio. Front. Immunol., 9: 1824. Search in Google Scholar

Goth L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta, 196: 143–152. Search in Google Scholar

Hoshino T., Ishizaki K., Sakamoto T., Kumeta H., Yumoto I., Matsuyama H., Ohgiya S. (1997). Isolation of a Pseudomonas species from fish intestine that produces a protease active at low temperature. Lett. Appl. Microbiol., 25: 70–72. Search in Google Scholar

Holbech H., Andersen L., Petersen G.I., Korsgaard B., Pedersen K.L., Bjerregaard P. (2001). Development of an ELISA for vitellogenin in whole body homogenate of zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol., 130: 119–131. Search in Google Scholar

Hoseinifar S.H., Yousefi S., Van Doan H., Ashouri G., Gioacchini G., Maradonna F., Carnevali O. (2020). Oxidative stress and antioxidant defense in fish: the implications of probiotic, prebiotic, and synbiotics. Rev. Fish Sci. Aquac., 29: 198–217. Search in Google Scholar

Hossain A., Habibullah-Al-Mamun M., Nagano I., Masunaga S., Kitazawa D., Matsuda H. (2022). Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environ. Sci. Pollut. Res., 29: 1–22. Search in Google Scholar

Keereelang J., Mangumphan K., Chitmanat C., Tongsiri S., Linh N.V., Van Doan H. (2022). Dietary effect of Lactobacillus plantarum (TISTR 912) on digestive enzyme activity, growth performance, immune response, and disease resistance of black sharkminnow (Labeo chrysophekadion) against Aeromonas hydrophila infection. Aquac. Rep., 27: 101409. Search in Google Scholar

Krishnaveni G., Vignesh S., Vidhyalakshmi N., Vijay V., Ramesh U. (2021). Effects of dietary supplementation of Lactobacillus fermentum URLP18 on growth, innate immunity and survival against Aeromonas hydrophila ATCC 7966 challenge in freshwater fish Cyprinus carpio (common carp). Aquac. Res., 52: 1160–1176. Search in Google Scholar

Kwoji I.D., Aiyegoro O.A., Okpeku M., Adeleke M.A. (2021). Multi-strain probiotics: synergy among isolates enhances biological activities. Biology, 10: 322. Search in Google Scholar

Larsson D.G., Flach C.F. (2022). Antibiotic resistance in the environment. Nat. Rev. Microbiol., 20: 257–269. Search in Google Scholar

Lee S., Katya K., Park Y., Won S., Seong M., Bai S.C. (2017). Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish Shellfish. Immunol., 61: 201–210. Search in Google Scholar

Li Y., Paonessa J.D., Zhang Y. (2012). Mechanism of chemical activation of Nrf2. PloS one, 7(4): e35122. Search in Google Scholar

Li S., Guo L., Si X., Dai Z., Zhou Z., Wu Z. (2022 a). Lactobacillus plantarum WCFS1 alleviates Aeromonas hydrophila NJ-1-induced inflammation and muscle loss in zebrafish (Danio rerio). Aquaculture, 548: 737603. Search in Google Scholar

Li W., Huang X., Lu X., Jiang B., Liu C., Huang Y., Su Y. (2022 b). Effects of dietary Lactobacillus reuteri on growth performance, nutrient retention, gut health and microbiota of the Nile tilapia (Oreochromis niloticus). Aquac. Rep., 26: 101275. Search in Google Scholar

Lin P.H., Chen S.W., Wen Z.H., Hu S.Y. (2022). Administration of the potential probiotic Paenibacillus ehimensis NPUST1 enhances expression of indicator genes associated with nutrient metabolism, growth and innate immunity against Aeromonas hydrophila and Streptococcus iniae infections in zebrafish (Danio rerio). Fishes, 7: 386. Search in Google Scholar

Lin Y.S., Saputra F., Chen Y.C., Hu S.Y. (2019). Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish Shellfish. Immunol., 86: 410-419. Search in Google Scholar

Lo J.Y., Spatola B.N., Curran S.P. (2017). WDR23 regulates NRF2 independently of KEAP1. PLoS Genet., 13: e1006762. Search in Google Scholar

López Nadal A., Ikeda-Ohtsubo W., Sipkema D., Peggs D., McGurk C., Forlenza M., Wiegertjes G.F., Brugman S. (2020). Feed, microbiota, and gut immunity: using the zebrafish model to understand fish health. Front. Immunol., 11: 114. Search in Google Scholar

Lu Y., Zhang Z., Liang X., Chen Y., Zhang J., Yi H., Liu T., Yang L., Shi H., Zhang L. (2019). Study of gastrointestinal tract viability and motility via modulation of serotonin in a zebrafish model by probiotics. Food Funct., 10: 7416–7425. Search in Google Scholar

Mello F.V., Cunha S.C., Fogaça F.H., Alonso M.B., Torres J.P.M., Fernandes J.O. (2022). Occurrence of pharmaceuticals in seafood from two Brazilian coastal areas: Implication for human risk assessment. Sci. Total Environ., 803: 149744. Search in Google Scholar

Mohammadi Arani M., Salati A.P., Safari O., Keyvanshokooh S. (2019). Dietary supplementation effects of Pediococcus acidilactici as probiotic on growth performance, digestive enzyme activities and immunity response in zebrafish (Danio rerio). Aquac. Nutr., 25: 854–861. Search in Google Scholar

National Research Council (NRC) (1993) Nutrient requirements of fish (p. 114). National Academy Press. Search in Google Scholar

Nguyen T.L., Park C.I., Kim D.H. (2017). Improved growth rate and disease resistance in olive flounder, Paralichthys olivaceus, by probiotic Lactococcus lactis WFLU12 isolated from wild marine fish. Aquaculture, 471: 113–120. Search in Google Scholar

Nishikimi M., Rao N.A., Yagi K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen. Biochem. Biophys. Res. Commun., 46: 849–854. Search in Google Scholar

Oberley L.W., Oberley T.D. (1988). Role of antioxidant enzymes in cell immortalization and transformation. Mol. Cell. Biochem., 84: 147–153. Search in Google Scholar

Perez-Leal O., Barrero C.A., Merali S. (2016). Activation of Nrf2 translation by a Keap1 independent mechanism. Free Rad. Biol. Med., 100: S108. Search in Google Scholar

Pagalia D.E., Valentine W.N. (1967). Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 70: 158–169. Search in Google Scholar

Palaksha K.J., Shin G.W., Kim Y.R., Jung T.S. (2008). Evaluation of non-specific immune components from the skin mucus of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 24: 479e88. Search in Google Scholar

Pillinger M., Weber B., Standen B., Schmid M.C., Kesselring J.C. (2022). Multi-strain probiotics show increased protection of intestinal epithelial cells against pathogens in rainbow trout (Oncorhynchus mykiss). Aquaculture, 560: 738487. Search in Google Scholar

Rendueles O., Ferrières L., Frétaud M., Bégaud E., Herbomel P., Levraud J.P., Ghigo J.M. (2012). A new zebrafish model of oro-intestinal pathogen colonization reveals a key role for adhesion in protection by probiotic bacteria. PLoS Pathog, 8: e1002815. Search in Google Scholar

Rashidian G., Boldaji J.T., Rainis S., Prokić M.D., Faggio C. (2021). Oregano (Origanum vulgare) extract enhances zebrafish (Danio rerio) growth performance, serum and mucus innate immune responses and resistance against Aeromonas hydrophila challenge. Animals, 11: 299. Search in Google Scholar

Sagada G., Gray N., Wang L., Xu B., Zheng L., Zhong Z., Ullah S., Tegomo A.F., Shao Q. (2021). Effect of dietary inactivated Lactobacillus plantarum on growth performance, antioxidative capacity, and intestinal integrity of black sea bream (Acanthopagrus schlegelii) fingerlings. Aquaculture, 535: 736370. Search in Google Scholar

Sheikhzadeh N., Pashaki A.K., Nofouzi K., Heidarieh M., Tayefi-Nasrabadi H. (2012). Effects of dietary Ergosan on cutaneous mucosal immune response in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 32: 407–410. Search in Google Scholar

Siwicki A.K., Anderson D.P., Rumsey G.L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol., 41: 125–139. Search in Google Scholar

Standen B.T., Peggs D.L., Rawling M..D, Foey A., Davies S.J., Santos G.A., Merrifield D.L. (2016). Dietary administration of a commercial mixed-species probiotic improves growth performance and modulates the intestinal immunity of tilapia, Oreochromis niloticus. Fish Shellfish Immunol., 49: 427–435. Search in Google Scholar

Valcarce D..G, Martínez-Vázquez J.M., Riesco M.F., Robles V. (2020). Probiotics reduce anxiety-related behavior in zebrafish. Heliyon, 6: e03973. Search in Google Scholar

Valcarce D.G., Riesco M.F., Martínez-Vázquez J.M., Robles V. (2019). Diet supplemented with antioxidant and anti-inflammatory probiotics improves sperm quality after only one spermatogenic cycle in zebrafish model. Nutrients, 11: 843. Search in Google Scholar

Wang A.R., Ran C., Ringø E., Zhou Z.G. (2018). Progress in fish gastrointestinal microbiota research. Rev. Aquac., 10: 626–640. Search in Google Scholar

Wang C., Lu Y., Sun B., Zhang M., Wang C., Xiu C., Johnson A.C., Wang P. (2023). Ecological and human health risks of antibiotics in marine species through mass transfer from sea to land in a coastal area: A case study in Qinzhou Bay, the South China sea. Environ. Pollut., 316: 120502. Search in Google Scholar

Wang Y., Ren Z., Fu L., Su X. (2016). Two highly adhesive lactic acid bacteria strains are protective in zebrafish infected with Aeromonas hydrophila by evocation of gut mucosal immunity. J. Appl. Microbiol., 120: 441–451. Search in Google Scholar

Won S., Hamidoghli A., Choi W., Park Y., Jang W.J., Kong I.S., Bai S.C. (2020). Effects of Bacillus subtilis WB60 and Lactococcus lactis on growth, immune responses, histology and gene expression in Nile tilapia, Oreochromis niloticus. Microorganisms, 8: 67. Search in Google Scholar

Worthington C.C. (1991). Worthington. Manual Related Biochemical. 3th Edition. Freehold, New Jerse, pp: 80–85. Search in Google Scholar

Xie J.J., Liu Q.Q., Liao S., Fang H.H., Yin P., Xie S.W., Tian L.X., Liu Y.J., Niu J. (2019). Effects of dietary mixed probiotics on growth, non-specific immunity, intestinal morphology and microbiota of juvenile pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol., 90: 456–465. Search in Google Scholar

Xue J., Shen K., Hu Y., Hu Y., Kumar V., Yang,G., Wen C. (2020). Effects of dietary Bacillus cereus, B. subtilis, Paracoccus marcusii, and Lactobacillus plantarum supplementation on the growth, immune response, antioxidant capacity, and intestinal health of juvenile grass carp (Ctenopharyngodon idellus). Aquacult. Rep., 17: 100387. Search in Google Scholar

Yilmaz S., Yilmaz E., Dawood M.A., Ringø E., Ahmadifar E., Abdel-Latif H.M.R. (2022). Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: A review. Aquaculture, 547: 737514. Search in Google Scholar

Yilmaz S. (2019) Effects of dietary blackberry syrup supplement on growth performance, antioxidant, and immunological responses, and resistance of Nile tilapia, Oreochromis niloticus to Plesiomonas shigelloides. Fish Shellfish Immunol., 84: 1125–1133. Search in Google Scholar

Yılmaz S., Ergün S. (2018) Trans-cinnamic acid application for rainbow trout (Oncorhynchus mykiss): I. Effects on haematological, serum biochemical, non-specific immune and head kidney gene expression responses. Fish Shellfish Immunol., 78: 140–157. Search in Google Scholar

Zhai Q., Yu L., Li T., Zhu J., Zhang C., Zhao J., Zhang H., Chen W. (2017). Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie Van Leeuwenhoek, 110: 501–513. Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine