Accès libre

Are the biodistribution and metabolic effects of copper nanoparticles dependent on differences in the physiological functions of dietary fibre?

À propos de cet article

Citez

Abbaspour N., Hurrell R., Kelishadi R. (2014). Review on iron and its importance for human health. J. Res. Med. Sci., 19: 164–174. Search in Google Scholar

Adams S., Sello C.T., Qin G.X., Che D., Han R. (2018). Does dietary fiber affect the levels of nutritional components after feed formulation? Fibers, 6: 29. Search in Google Scholar

Al Alawi A.M., Majoni S.W., Falhammar H. (2018). Magnesium and human health: perspectives and research directions. Int. J. Endocrinol., 2018: 9041694. Search in Google Scholar

Angelova M., Asenova S., Nedkova V., Koleva-Kolarova R. (2011). Copper in the human organism. Trakia J. Sci., 9: 88–98. Search in Google Scholar

Arredondo M., Núñez M.T. (2005). Iron and copper metabolism. Mol. Aspects Med., 26: 313–327. Search in Google Scholar

Asvarujanon P., Ishizuka S., Hara H. (2004). Inhibitory effects of psyllium on rat mineral absorption were abolished by reduction of viscosity with partial hydrolysis. Biosci. Biotechnol. Biochem., 68: 1737–1742. Search in Google Scholar

Baye K., Guyot J.P., Mouquet-Rivier C. (2017). The unresolved role of dietary fibers on mineral absorption. Crit. Rev. Food Sci. Nutr., 57: 949–957. Search in Google Scholar

Bost M., Houdart S., Oberli M., Kalonji E., Huneau J.F., Margaritis I. (2016). Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol., 35: 107–115. Search in Google Scholar

Brewer G.J. (2010). Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol., 23: 319–326. Search in Google Scholar

Caballero B. (1988). Nutritional implications of dietary interactions: a review. Food Nutr. Bull., 10: 1–12. Search in Google Scholar

Capuano E. (2017). The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr., 57: 3543–3564. Search in Google Scholar

Chen Z., Meng H., Yuan H., Xing G., Chen C., Zhao F., Wang Y., Zhang C., Zhao Y. (2007). Identification of target organs of copper nanoparticles with ICP-MS technique. J. Radioanal. Nuclear Chem., 272: 599–603. Search in Google Scholar

Cholewińska E., Ognik K., Fotschki B., Zduńczyk Z., Juśkiewicz J. (2018 a). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PloS One, 13: e0197083. Search in Google Scholar

Cholewińska E., Juśkiewicz J., Ognik, K. (2018 b). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the metabolic and immune status in a rat model. J. Trace Elem. Med. Biol., 48: 111–117. Search in Google Scholar

Cholewińska E., Juśkiewicz J., Majewski M., Smagieł R., Listos P., Fotschki B., Godycka-Kłos I., Ognik K. (2022). Effect of copper nanoparticles in the diet of WKY and SHR rats on the redox profile and histology of the heart, liver, kidney, and small intestine. Antioxidants, 11: 910. Search in Google Scholar

Cholewińska E., Marzec A., Sołek P., Fotschki B., Listos P., Ognik K., Juśkiewicz J. (2023). The effect of copper nanoparticles and a different source of dietary fibre in the diet on the integrity of the small intestine in the rat. Nutrients, 15: 1588. Search in Google Scholar

Chudobova D., Cihalova K., Kopel P., Melichar L., Ruttkay-Nedecky B., Vaculovicova M., Adam V., Kizek R. (2015). Chapter 13 – Complexes of metal-based nanoparticles with chitosan suppressing the risk of Staphylococcus aureus and Escherichia coli infections. In: Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases. Academic Press, pp. 217–232. Search in Google Scholar

Coudray C., Demigné C., Rayssiguier Y. (2003). Effects of dietary fibers on magnesium absorption in animals and humans. J. Nutr., 133: 1–4. Search in Google Scholar

Coudray C., Feillet-Coudray C., Gueux E., Mazur A., Rayssiguier Y. (2006). Dietary inulin intake and age can affect intestinal absorption of zinc and copper in rats. J. Nutr., 136: 117–122. Search in Google Scholar

Drews L.M., Kies C., Fox H.M. (1979). Effect of dietary fiber on copper, zinc, and magnesium utilization by adolescent boys. Am. J. Clin. Nutr., 32: 1893–1897. Search in Google Scholar

El-Zoghbi M., Sitohy M.Z. (2001). Mineral absorption by albino rats as affected by some types of dietary pectins with different degrees of esterification. Nahrung, 45: 114–117. Search in Google Scholar

Espinosa C.D., Stein H.H. (2021). Digestibility and metabolism of copper in diets for pigs and influence of dietary copper on growth performance, intestinal health, and overall immune status: a review. J. Anim. Sci. Biotechnol., 12: 13. Search in Google Scholar

Fischer P.W., Giroux A., L’Abbe M.R. (1984). Effect of zinc supplementation on copper status in adult man. Am. J. Clin. Nutr., 40: 743–746. Search in Google Scholar

Gambling L., Kennedy C., McArdle H.J. (2011). Iron and copper in fetal development. Semin Cell Dev. Biol., 22: 637–644. Search in Google Scholar

Gheisari A.A., Sanei A., Samie A., Gheisari M.M., Toghyani M. (2011). Effect of diets supplemented with different levels of manganese, zinc, and copper from their organic or inorganic sources on egg production and quality characteristics in laying hens. Biol. Trace Elem. Res., 142: 557–571. Search in Google Scholar

Gibson R.S. (2005). Principles of nutritional assessment, 2nd edition, Oxford University, New York, pp. 697–711. Search in Google Scholar

Gibson R.S. (2007). The role of diet- and host-related factors in nutrient bioavailability and thus in nutrient-based dietary requirement estimates. Food Nutr. Bull., 28: S77–S100. Glasdam S.M., Glasdam S., Peters G.H. (2016). The importance of magnesium in the human body: a systematic literature review. Adv. Clin. Chem., 73: 169–193. Search in Google Scholar

Gralak M.A., Leontowicz M., Morawiec M., Bartnikowska E., Kulasek G.W. (1996). Comparison of the influence of dietary fibre sources with different proportions of soluble and insoluble fibre on Ca, Mg, Fe, Zn, Mn and Cu apparent absorption in rats. Arch. Anim. Nutr., 49: 293–299. Search in Google Scholar

Gupta A., Lutsenko S. (2009). Human copper transporters: mechanism, role in human disease and therapeutic potential. Future Med. Chem., 1: 1125–1142. Search in Google Scholar

Harvey L.J., Majsak-Newman G., Dainty J.R., Lewis D.J., Langford N.J., Crews H.M., Fairweather-Tait S.J. (2003). Adaptive responses in men fed low- and high-copper diets. Br. J. Nutr., 90: 161–168. Search in Google Scholar

Hébert C.D., Elwell M.R., Travlos G.S., Fitz C.J., Bucher J.R. (1993). Subchronic toxicity of cupric sulfate administered in drinking water and feed to rats and mice. Fundam. Appl. Toxicol., 21: 461–475. Search in Google Scholar

Jaiser S.R., Winston G.P. (2010). Copper deficiency myelopathy. J. Neurol., 257: 869–881. Kieffer D.A., Martin R.J., Adams S.H. (2016). Impact of dietary fibers on nutrient management and detoxification organs: gut, liver, and kidneys. Adv. Nutr., 7: 1111–1121. Search in Google Scholar

Kim M., Shin H.K. (1996). The water-soluble extract of chicory reduces glucose uptake from the perfused jejunum in rats. J. Nutr., 126: 2236–2242. Search in Google Scholar

Kim B.E., Nevitt T., Thiele D.J. (2008). Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol., 4: 176–185. Search in Google Scholar

Krzysik M., Grajeta H., Prescha A. (2009). Effect of pectin and cellulose on the content of minerals in the femur of rats. Pol. J. Food Nutr. Sci., 59: 357–360. Search in Google Scholar

Kumar V., Kalita J., Misra U.K., Bora H.K. (2015). A study of dose response and organ susceptibility of copper toxicity in a rat model. J. Trace Elem. Med. Biol., 29: 269–274. Search in Google Scholar

Kumar V., Kalita J., Bora H.K., Misra U.K. (2016). Temporal kinetics of organ damage in copper toxicity: A histopathological correlation in rat model. Regul. Toxicol. Pharmacol. 81: 372–380. Search in Google Scholar

Lee I.C., Ko J.W., Park S.H., Shin N.R., Shin I.S., Moon C., Kim J.H., Kim H.C., Kim J.C. (2016 a). Comparative toxicity and biodistribution assessments in rats following subchronic oral exposure to copper nanoparticles and microparticles. Part. Fibre Toxicol., 13: 56. Search in Google Scholar

Lee I.C., Ko J.W., Park S.H., Lim J.O., Shin I.S., Moon C., Kim S.H., Heo J.D., Kim J.C. (2016 b). Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int. J. Nanomedicine, 11: 2883–2900. Search in Google Scholar

Lorincz M.T. (2018). Wilson disease and related copper disorders. Handb. Clin. Neurol., 147: 279–292. Search in Google Scholar

Maćkowiak K., Torlińska-Walkowiak N., Torlińska B. (2016). Dietary fibre as an important constituent of the diet. Postepy Hig. Med. Dosw., 70: 104–109. Search in Google Scholar

McRorie J.W.Jr., McKeown N.M. (2017). Understanding the physics of functional fibers in the gastrointestinal tract: An evi-dence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J. Acad. Nutr. Diet., 117: 251–264. Search in Google Scholar

Ognik K., Stępniowska A., Cholewińska E., Kozłowski K. (2016). The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poultry Sci., 95: 2045–2051. Search in Google Scholar

Ognik K, Sembratowicz I, Cholewińska E, Jankowski J, Kozłowski K, Juśkiewicz J, Zduńczyk Z. (2018 a). The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Anim. Sci. J., 89: 579–588. Search in Google Scholar

Ognik K., Cholewińska E., Juśkiewicz J., Zduńczyk Z., Tutaj K., Szlązak R. (2018 b). The effect of copper nanoparticles and copper (II) salt on redox reactions and epigenetic changes in a rat model. J. Anim. Physiol. Anim. Nutr., 103: 675–686. Search in Google Scholar

Ognik K., Cholewińska E., Tutaj K., Cendrowska-Pinkosz M., Dworzański W., Dworzańska A., Juśkiewicz J. (2020). The effect of the source and dosage of dietary Cu on redox status in rat tissues. J. Anim. Physiol. Anim. Nutr., 104: 352–361. Search in Google Scholar

Opazo C.M., Greenough M.A., Bush A.I. (2014). Copper: from neurotransmission to neuroproteostasis. Front. Aging Neurosci., 6: 143. Search in Google Scholar

Rockway S.W, Brannon P.M., Weber C.W. (1987). Bioavailability of copper bound to dietary fiber in mice and rats. J. Food Sci., 52: 1423–1427. Search in Google Scholar

Roohani N., Hurrell R., Kelishadi R., Schulin R. (2013). Zinc and its importance for human health: an integrative review. J. Res. Med. Sci., 18: 144–157. Search in Google Scholar

Sandström B., Davidsson L., Cederblad A., Lönnerdal B. (1985). Oral iron, dietary ligands and zinc absorption. J. Nutr., 115: 411–414. Search in Google Scholar

Sawosz E., Łukasiewicz M., Łozicki A., Sosnowska M., Jaworski S., Niemiec J., Scott A., Jankowski J., Józefiak D., Chwalibog A. (2018). Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Arch. Anim. Nutr., 72: 396–406. Search in Google Scholar

Scott A., Vadalasetty K.P., Chwalibog A., Sawosz E. (2018). Copper nanoparticles as an alternative feed additive in poultry diet: a review. Nanotechnol. Rev., 7: 69–93. Search in Google Scholar

Sharp P.A. (2003). Ctr1 and its role in body copper homeostasis. Int. J. Biochem. Cell Biol., 35: 288–291. Search in Google Scholar

Spiller G.A. (2001). Handbook of dietary fiber in human nutrition. 3rd ed. Boca Raton, Florida, CRC Press LLC. Search in Google Scholar

Tishchenko K.I., Beloglazkina E.K., Mazhuga A.G., Zyk N.V. (2016). Copper-containing enzymes: Site types and low-molecular-weight model compounds. Ref. J. Chem., 6: 49. Search in Google Scholar

Turnlund J.R., King J.C., Gong B., Keyes W.R., Michel M.C. (1985). A stable isotope study of copper absorption in young men: effect of phytate and alpha-cellulose. Am. J. Clin. Nutr., 42: 18–23. Search in Google Scholar

Wapnir R.A. (1998). Copper absorption and bioavailability. Am. J. Clin. Nutr., 67: 1054S–1060S. Search in Google Scholar

Wijmenga C., Klomp L.W. (2004). Molecular regulation of copper excretion in the liver. Proc. Nutr. Soc., 63: 31–39. Search in Google Scholar

Yadrick M.K., Kenney M.A., Winterfeldt E.A. (1989). Iron, copper, and zinc status: Response to supplementation with zinc or zinc and iron in adult females. Am. J. Clin. Nutr., 49: 145–150. Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine