À propos de cet article

Citez

Accorsi P.A., Pacioni B., Pezzi C., Forni M., Flint D.J., Seren E. (2002). Role of prolactin, growth hormone and insulin-like growth factor 1 in mammary gland involution in the dairy cow. J. Dairy Sci., 85: 507–513. Search in Google Scholar

Adamczyk K. (2018). Dairy cattle welfare as a result of human–animal relationship – a review. Ann. Anim. Sci., 18: 601–622. Search in Google Scholar

Adamczyk K., Górecka-Bruzda A., Nowicki J., Gumułka M., Molik E., Schwarz T., Earley B., Klocek C. (2015). Perception of environment in farm animals – a review. Ann. Anim. Sci., 15: 565–589. Search in Google Scholar

Allwyn G., Al Abri R., Malik A., Al-Hinai A. (2021). Economic analysis of replacing HPS lamp with LED Lamp and cost estimation to set up PV/Battery System for street lighting in Oman. Energies, 14: 7697. Search in Google Scholar

Angrecka S., Herbut P. (2016). Impact of barn orientation on insolation and temperature of stalls surface. Ann. Anim. Sci., 16: 887–896. Search in Google Scholar

Angrecka S., Herbut P., Nawalany G., Sokołowski P. (2017). The impact of localization and barn type on insolation of sidewall stalls during summer. J. Ecol. Eng., 18: 60–66. Search in Google Scholar

ASAE (2001). Lighting for dairy farms and the poultry industry. EP344.2. ASAE Standards, St. Joseph, MI, USA, 49085–9659. pp. 660–664. Search in Google Scholar

ASAE (2005). Lighting for agricultural facilities. EP344.3, ASAE Standards, American Society of Agricultural Engineers, St. Joseph. MI, USA, pp. 685–697. Search in Google Scholar

Asher A., Fialko M., Fares F., Moallem U., Yaacoby S., Gutman R. (2022). The effect of short-wavelength white LED illumination throughout the night on the milk fatty acid profile of high-yielding dairy cows. Biology, 11: 1799. Search in Google Scholar

Asher A., Shabtay A., Brosh A., Eitam H., Agmon R., Cohen-Zinder M., Zubidat A.E., Haim A. (2015). “Chrono-functional milk”: The difference between melatonin concentrations in night-milk versus day-milk under different night illumination conditions. Chronobiol. Int., 32: 1409–1416. Search in Google Scholar

Auchtung T.L., Dahl G.E. (2004). Prolactin mediates photoperiodic immune enhancement: Effects of administration of exogenous prolactin on circulating concentrations, receptor expression, and immune function in steers. Biol. Reprod., 71: 1913–1918. Search in Google Scholar

Auchtung T.L., Rius A.G., Kendall P.E., McFadden T.B., Dahl G.E. (2005). Effects of photoperiod during the dry period on prolactin, prolactin receptor and milk production of dairy cows. J. Dairy Sci., 88: 121–127. Search in Google Scholar

Auchtung T.L., Salak-Johnson J.L., Morin D.E., Mallard C.C., Dahl G.E. (2004). Effects of photoperiod during the dry period on cellular immune function of dairy cows. J. Dairy Sci., 87: 3683–3689. Search in Google Scholar

Auldist M.J., Turner S.A., McMahon C.D., Prosser C.G. (2007). Effects of melatonin on the yield and composition of milk from grazing dairy cows in New Zealand. J. Dairy Res., 74: 52–57. Search in Google Scholar

Becker C.A., Collier R.J., Stone A.E. (2020). Invited review: Physiological and behavioral effects of heat stress in dairy cows. J. Dairy Sci., 103: 6751–6770. Search in Google Scholar

Blackmore T.L., Temple W., Foster T.M. (2016) Selective attention in dairy cattle. Behav. Process., 129: 37–40. Search in Google Scholar

Boztepe S., Keskin İ., Semacan A., Akyürek F., Aytekin İ., Şahin Ö. (2022). Melatonin differences between day and night milk in primiparous Holstein Friesian and Jersey dairy cattle. Selcuk J. Agr. Food Sci., 36: 27–30. Search in Google Scholar

Brooks D.E., Komàromy A.M., Källberg M.E. (1999). Comparative retinal ganglion cell and optic nerve morphology. Vet. Ophthalmol., 2: 3–11. Search in Google Scholar

Casey T., Crodian J., Donkin S.S., Plaut K. (2014). Continuously changing light-dark phase decreases milk yield, fat, protein and lactose in dairy cows. J. Adv. Dairy Res., 2: 2. Search in Google Scholar

Casey T.M., Plaut K. (2022). Circadian clocks and their integration with metabolic and reproductive systems: our current understanding and its application to the management of dairy cows. J. Anim. Sci., 100: skac233. Search in Google Scholar

Ceballos M.C., Sant’Anna A.C., Boivin X., de Oliveira Costa F., Carvalhal M.V.D.L., da Costa M.J.P. (2018). Impact of good practices of handling training on beef cattle welfare and stockpeople attitudes and behaviors. Livest. Sci., 216: 24–31. Search in Google Scholar

Celozzi S., Zucali M., Bava L., Tangorra F.M., Zanini L., Tamburini A., Sandrucci A. (2020). The use of integrated data collection system to evaluate milking performance, microclimatic condition and cows’ behaviour. Ital. J. Anim. Sci., 19:1: 856–864. Search in Google Scholar

Charlton G.L., Rutter S.M., East M., Sinclair L.A. (2011). Preference of dairy cows: Indoor cubicle housing with access to a total mixed ration vs. access to pasture. Appl. Anim. Behav. Sci., 130: 1–9. Search in Google Scholar

Cipolla-Neto J., Amaral F.G., Afeche S.C., Tan D.X., Reiter R.J. (2014). Melatonin, energy metabolism, and obesity: a review. J. Pineal. Res., 56: 371–381. Search in Google Scholar

Clarke S., House H. (2006). Energy efficient dairy lighting. Agricultural engineering, FactSheet, Ministry of Agriculture, Food and Rural Affairs, Ontario, Canada, Order No 06–007, available: http://www.omafra.gov.on.ca/english/engineer/facts/06-007.pdf Search in Google Scholar

Collier R.J., Dahl G.E., VanBaale M.J. (2006). Major advances associated with environmental effects on dairy cattle. J. Dairy Sci., 89: 1244–1253. Search in Google Scholar

Collin S.P. (2008). A web-based archive for topographic maps of retinal cell distribution in vertebrates. Clin. Experiment. Ophthalmol., 91: 85–95. Search in Google Scholar

Contreras-Correa Z.E., Lemire R.L., Burnett D.D., Lemley C.O. (2020). Temporal transcript abundance of clock genes, angiogenic factors and nutrient sensing genes in bovine placental explants. Theriogenology, 151: 74–80. Search in Google Scholar

Contreras-Correa Z.E., Messman R.D., Swanson R.M., Lemley C.O. (2023). Melatonin in health and disease: A perspective for livestock production. Biomolecules, 13: 490. Search in Google Scholar

Cox K.H., Takahashi J.S. (2019). Circadian clock genes and the transcriptional architecture of the clock mechanism. J. Mol. Endocrinol., 63: 93–102. Search in Google Scholar

Crossley R.E., Bokkers E.A.M., Browne N., Sugrue K., Kennedy E., Conneely M. (2022). Risk factors associated with indicators of dairy cow welfare during the housing period in Irish, spring-calving, hybrid pasture-based systems. Prev. Vet. Med., 208: 105760. Search in Google Scholar

Dahl G.E. (2005). Let there be light: Photoperiod management of cows for production and health. Proc. 42nd Florida Dairy Production Conference, Gainesville, 3.05.2005, pp. 35–41. Search in Google Scholar

Dahl G.E. (2008). Effects of short day photoperiod on prolactin signaling in dry cows: A common mechanism among tissues and environments? J. Anim. Sci., 86: 10–14. Search in Google Scholar

Dahl G.E. (2010). Photoperiod management of dairy cattle. Proc. Minnesota Dairy Health Conference, 19–20.05.2010, St. Paul, Minnesota, USA, pp. 15–20. Search in Google Scholar

Dahl G.E., Buchanan B.A., Tucker H.A. (2000). Photoperiodic effects on dairy cattle: A review. J. Dairy. Sci., 83: 885–893. Search in Google Scholar

Dahl G.E., Elsasser T.H., Capuco A.V., Erdman R.A., Peters R.R. (1997). Effects of long daily photoperiod on milk yield and circulating insulin-like growth factor-1 (IFG-1). J. Dairy Sci., 80: 2784–2879. Search in Google Scholar

Dahl G.E., Petitclerc D. (2003). Management of photoperiod in the dairy herd for improved production and health. J. Anim. Sci., 81(Suppl. 3): 11–17. Search in Google Scholar

Dahl G.E., Tao S., Thompson I.M. (2012). Effects of photoperiod on mammary gland development and lactation. J. Anim. Sci., 90: 755–760. Search in Google Scholar

Danenmann K., Buchenauer D., Fliegner H. (1985). The behaviour of calves under four levels of lighting. Appl. Anim. Behav. Sci., 13: 243–258. Search in Google Scholar

Darlington T.K., Wager-Smith K., Ceriani M.F., Staknis D., Gekakis N., Steeves T.D., Weitz C.J., Takahashi J.S., Kay S.A. (1998). Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science, 5: 1599–603. Search in Google Scholar

De Almeida G.L.P., Pandorfi H., Baptista F., Guiselini C., da Cruz V.F., de Almeida G.A.P. (2015). Efficiency of use of supplementary lighting in rearing of dairy calves during milk feeding stage. R. Bras. Eng. Agríc. Ambiental, 19: 989–995. Search in Google Scholar

Dimov D. (2019). Zoo-hygienic assessment of lighting in semi-open freestall barns for dairy cows. Agricultural Sci. Techno., 11: 67–73. Search in Google Scholar

Dimov D., Penev T., Marinov I. (2020). Illumination levels in milking parlor in dairy cows freestall housing system. Bulg. J. Agric. Sci., 26 (Suppl. 1): 78–82. Search in Google Scholar

Dolezal O., Bilek M., Dolejs M. 2004. The principles of welfare and new EU standards in cattle breeding (in Czech). VUZV, 1st Edition, Praha, Czechia, 70 pp. Search in Google Scholar

Earnhardt-San A.L., Baker E.C., Riley D.G., Ghaffari N., Long C.R., Cardoso R.C., Randel R.D., Welsh T.H.Jr. (2023). Differential expression of circadian clock genes in the bovine neuroendocrine adrenal system. Genes, 14: 2082. Search in Google Scholar

Elsabagh M., Mon M., Takao Y., Shinoda A., Watanabe T., Kushibiki S., Obitsu T., Sugino T. (2020). Exposure to blue led light before the onset of darkness under a long-day photoperiod alters melatonin secretion, feeding behaviour and growth in female dairy calves. Anim. Sci. J., 91: e13353. Search in Google Scholar

Entsu S., Dohi H., Yamada A. (1992). Visual acuity of cattle determined by the method of discrimination learning. Appl. Anim. Behav. Sci., 34: 1–10. Search in Google Scholar

Forkman B., Boissy A., Meunier-Salaün M.C., Canali E., Jones R.B. (2007). A critical review of fear tests used on cattle, pigs, sheep, poultry and horses. Physiol. Behav., 92: 340–374. Search in Google Scholar

Gaworski M. (2021). Implementation of technical and technological progress in dairy production. Processes, 9: 2103. Search in Google Scholar

Gaworski M., Boćkowski M. (2022). Comparison of cattle housing systems based on the criterion of damage to barn equipment and construction errors. Animals, 12: 2530. Search in Google Scholar

Gehring W.J. (2014). The evolution of vision. WIREs Dev. Biol., 3: 1–40. Search in Google Scholar

Gekakis N. (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science, 280: 1564–1569. Search in Google Scholar

Gilbert B.J., Arave C.W. (1986). Ability of cattle to distinguish among different wavelengths of light. J. Dairy Sci., 69: 825–832. Search in Google Scholar

Gooch C.A., Ludington D.C. (2002). Lighting system considerations and design options for application of photoperiod management for freestall and tie stall barns. Pro-Dairy Cornell University Library, https://ecommons.cornell.edu/server/api/core/bitstreams/f4bea5ccc3b6-4d97-a8e3-4a68a6d31401/content Search in Google Scholar

Grandin T. (2021). The visual, auditory, and physical environment of livestock handling facilities and its effect on ease of movement of cattle, pigs, and sheep. Front. Anim. Sci., 2: 744207. Search in Google Scholar

Guillaumond F., Dardente H., Gigue‘ re V., Cermakian N. (2005). Differential control of Bmal1 circadian transcription by REV–ERB and ROR nuclear receptors. J. Biol. Rhythms, 20: 391–403. Search in Google Scholar

Harmon J.D., Petersen D. (2011). Farm energy: Indoor lighting for livestock, poultry and farm shop facilities. Agriculture and Environment Extension Publications, Iowa State University, Ames, USA https://core.ac.uk/download/pdf/38909945.pdf Search in Google Scholar

Harner J.P., Smith J.F., Janni K. (2008). Lighting low profile cross ventilated dairy houses. Housing of the Future, Sioux Falls, SD, Kansas State University, Manhattan, USA, 10 pp. Search in Google Scholar

Haugan T., Reksen O., Gröhn Y.T., Kommisrud E., Ropstad E., Sehested E. (2005). Seasonal effects of semen collection and artificial insemination on dairy cow conception. Anim. Reprod. Sci., 90: 57–71. Search in Google Scholar

Havelka Z., Kunes R., Kononets Y., Stokes J.E., Smutny L., Olsan P., Kresan J., Stehlik R., Bartos P., Xiao M., Kriz P., Findura P., Roztocil D. (2022). Technology of microclimate regulation in organic and energy-sustainable livestock production. Agriculture, 12: 1563. Search in Google Scholar

Herbut P., Hoffmann G., Angrecka S., Godyn D., Vieira F.M.C., Adamczyk K., Kupczyński R. (2021). The effects of heat stress on the behaviour of dairy cows – a review. Ann. Anim. Sci., 21: 385–402. Search in Google Scholar

Hirata M., Arimoto C., Hattori N., Anzai H. (2019). Can cattle visually discriminate between green and dead forages at a short distance while moving in the field? Anim. Cogn., 22: 707–718. Search in Google Scholar

Hjalmarsson F.A., Olsson I.A., Ferneborg S.A., Agenäs S.A., Ternman E.A.B. (2014). Effect of low light intensity at night on cow traffic in automatic milking systems. Anim. Prod. Sci., 54: 1784–1786. Search in Google Scholar

Hörndahl, T., Neuman, L. (2012). Energy consumption in agricultural buildings – a survey of 16 farms in 2005–2006 supplemented by measurements on two farms in 2010–2012 (in Swedish). Landskap Trädgård Jordbruk Rapportserie, Rapport 2012:19, Alnarp, Sweden https://pub.epsilon.slu.se/9105/11/horndahl_et_al_121001.pdf Search in Google Scholar

Inspekcja Weterynaryjna (IW) (2023). Instruction of the Chief Veterinary Officer No. BP.0200.1.8.2022 regarding procedures for carrying out animal welfare inspections in slaughterhouses, identification and registration of animals and reporting on animal welfare inspections (in Polish), 66 pp. file:///C:/Users/krzys/Downloads/BP.0200.1.2.2022%20ws.%20post%C4%99powania%2 0przy%20przeprowadzaniu%20kontroli%20w%20rze%C5%BAniach%20pw.%20dobros tanu%20zwierz%C4%85t,%20....pdf Search in Google Scholar

Iqbal M.W., Draganova I., Morel P.C.H, Morris S.T. (2023). Variations in the 24 h temporal patterns and time budgets of grazing, rumination, and idling behaviors in grazing dairy cows in a New Zealand system. J. Anim. Sci., 101: skad038. Search in Google Scholar

Jacobs G.H. (2012). Comparative vision. In: Handbook of psychology, behaviour neuroscience, Nelson R.J., Mizumori S.J.Y., Weiner I.B. (eds). John Wiley & Sons, Inc., 2nd Edition, Hoboken, USA, pp. 52–80. Search in Google Scholar

Jacobs G.H., Deegan J.F., Neitz J. (1998). Photopigment basis for dichromatic vision in cows, goats, and sheep. Visual Neurosci., 15: 581–584. Search in Google Scholar

Janni K.A. 2002. Summary of dairy lighting research and practice. Minnesota Dairy Health Conference, St. Paul, Minnesota United States of Minnesota, Minneapolis, USA, pp. 132–141. Search in Google Scholar

Jeppsson K.-H., Nilsson D.E., von Wachenfelt H., Hörndahl T. (2014). Lighting design in animal buildings with DiaLux and a quantitative assessment of difference in lighting environment on pasture vs indoors for cattle (in Swedish). Inst. f. Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, LTJ-rapport 2013: 34. Search in Google Scholar

Jin-Ryong P., Nam-Jin Y., Shah-Ahmed B., Kwan-Seob S. (2018). Effect of LED lighting time on productivity, blood parameters and immune responses of dairy cows. Korean J. Org. Agric., 26: 515–532. Search in Google Scholar

Kassab A., Sugita S. (2000). Study of ganglion cell topography of the retina in buffaloes (Bos bubalis). Anim. Sci. J., 71: 600–608. Search in Google Scholar

Kelber A., Vorobyev M., Osorio D. (2003). Animal colour vision – behavioural tests and physiological concepts. Biol. Rev., 78: 81–118. Search in Google Scholar

Kim J.W., Yang H.J., Oel A.P., Brooks M.J., Jia L., Plachetzki D.C., Li W., Allison W.T., Swaroop A. (2016). Recruitment of rod photoreceptors from short-wavelength-sensitive cones during the evolution of nocturnal vision in mammals. Dev Cell., 37: 520–532. Search in Google Scholar

Knudsen E.I. (2011). Control from below: The role of a midbrain network in spatial attention. Eur. J. Neurosci., 33: 1961–1972. Search in Google Scholar

Knudsen E.I. (2018). Neural circuits that mediate selective attention: a comparative perspective. Trends Neurosci., 41: 789–805. Search in Google Scholar

Knudsen E.I. (2020). Evolution of neural processing for visual perception in vertebrates. J. Comp. Neurol., 528: 2888–2901. Search in Google Scholar

Land M.F. (2013). Animal vision: rats watch the sky. Curr. Biol., 23: 611–613. Search in Google Scholar

Lawson T.J., Kennedy A.D. (2002). Inhibition of nighttime melatonin secretion in cattle: threshold light intensity for dairy heifers. Can. J. Anim. Sci., 81: 153–156. Search in Google Scholar

Li H., Li K., Zhang K., Li Y., Gu H., Liu H., Yang Z., Cai D. (2021). The circadian physiology: implications in livestock health. Int. J. Mol. Sci., 22: 2111. Search in Google Scholar

Li Z., Zhang K., Zhou Y., Zhao J., Wang J., Lu W. (2023). Role of melatonin in bovine reproductive biotechnology. Molecules, 28: 4940. Search in Google Scholar

Lim D.H., Kim T.I., Park S.M., Ki K.S., Kim Y. (2021). Effects of photoperiod and light intensity on milk production and milk composition of dairy cows in automatic milking system. J. Anim. Sci. Technol., 63: 626–639. Search in Google Scholar

Lind O., Milton I., Andersson E., Jensen P., Roth L.S.V. (2017). High visual acuity revealed in dogs. PLoS ONE, 12: e0188557. Search in Google Scholar

Lindkvist S. (2019). Light for dairy cows – Methods to measure light in dairy barns. Swedish University of Agricultural Sciences, Degree project, 30 credits, Agriculture Science programme – Animal Science, Uppsala, Sweden, 63 pp. Search in Google Scholar

Lindkvist S., Ferneborg S., Ståhlberg K., Bånkestad D., Ekesten B., Agenäs S., Ternman E. (2023). Effect of light intensity, spectrum, and uniformity on the ability of dairy cows to navigate through an obstacle course. J. Dairy Sci., 106: 7698–7710. Search in Google Scholar

Lindkvist S., Ternman E., Ferneborg S., Bånkestad D., Lindqvist J., Ekesten B., Agenäs S. (2021). Effects of achromatic and chromatic lights on pupillary response, endocrinology, activity, and milk production in dairy cows. PLoS ONE, 16: e0253776. Search in Google Scholar

Mačuhova J., Bruckmaier R.M. (2004). Diurnal changes of oxytocin release during automatic milking. In: Automatic milking a better understanding, Meijering A., Hogeveen H., de Koning C.J.A.M. (Eds). Wageningen Academic Publishers, Wageningen, The Netherlands, p. 502. Search in Google Scholar

Mader T.L., Griffin D. (2015). Management of cattle exposed to adverse environmental conditions. Vet. Clin. North Am.: Food Anim. Pract., 31: 247–258. Search in Google Scholar

Marciniak A.M. (2008). Assessment of the level of natural lighting in free-stall barns (in Polish). Probl. Inż. Roln., 2: 109–113. Search in Google Scholar

McCabe C.J., Suarez-Trujillo A., Teeple K.A., Casey T.M., Boerman J.P. (2021). Chronic prepartum light-dark phase shifts in cattle disrupt circadian clocks, decrease insulin sensitivity and mammary development, and are associated with lower milk yield through 60 days postpartum. J. Dairy Sci., 104: 2422–2437. Search in Google Scholar

McGinley J.J., Friedman B.H. (2015). Autonomic responses to lateralized cold pressor and facial cooling tasks. Psychophysiology, 52: 416–424. Search in Google Scholar

Miller A.R.E., Douglass L.W., Erdman R.A., Dahl G.E. (2000). Effects of photoperiodic manipulation during the dry period of dairy cows. J. Dairy Sci., 83: 962–967. Search in Google Scholar

Miteva Ch. (2012). Hygienic aspects of production in dairy cows in freestall barns. Trakia University Publishing House, Stara Zagora, Bulgaria. Search in Google Scholar

Morin D.E., Nelson S.J., Reid E.D., Nagy D., Dahl G.E., Constable P.D. (2010). Effect of colostral volume, interval between calving and milking, and photoperiod on colostral IgG concentration in dairy cows. J. Am. Vet. Med. Assoc., 237: 420–428. Search in Google Scholar

Mure L.S. (2021). Intrinsically photosensitive retinal ganglion cells of the human retina. Front. Neurol., 12: 636330. Search in Google Scholar

Murphy B.A., Herlihy M.M., Nolan M.B., O’Brien C., Furlong J.G., Butler S.T. (2021). Identification of the blue light intensity administered to one eye required to suppress bovine plasma melatonin and investigation into effects on milk production in grazing dairy cows. J. Dairy Sci., 104: 12127–12138. Search in Google Scholar

Muthuramalingam, P., Kennedy, A.D., Berry, R.J. (2006). Plasma melatonin and insulin-like growth factor-1 responses to dim light at night in dairy heifers. J. Pineal Res., 40: 225–229. Search in Google Scholar

Nakagawa H., Okumura N. (2010). Coordinated regulation of circadian rhythms and homeostasis by the suprachiasmatic nucleus. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 86: 391–409. Search in Google Scholar

Olin N.L., Efremova E.N., Niyazov A.M., Lekomtsev P.L. (2021). The impact of the optical radiation spectrum of artificial lighting on the milk producing ability of cows. Proc. International Scientific and Practical Conference “Fundamental Scientific Research and Their Applied Aspects in Biotechnology and Agriculture” (FSRAABA 2021), BIO Web of Conferences 36, 05016. Search in Google Scholar

Ollivier F.J., Samuelson D.A., Brooks D.E., Lewis P.A., Kallberg M.E., Komáromy A.M. (2004). Comparative morphology of the tapetum lucidum (among selected species). Vet. Ophthalmol., 7: 11–22. Search in Google Scholar

Osborne V.R., Odongo N.E., Edwards A.M., McBride B.W. (2007). Effects of photoperiod and glucose-supplemented drinking water on the performance of dairy calves. J. Dairy Sci., 90: 5199–5207. Search in Google Scholar

Osorio D., Vorobyev M. (2008). A review of the evolution of animal colour vision and visual communication signals. Vision Res., 48: 2042–2051. Search in Google Scholar

Pal P., Aggarwal A., Deb R. (2022). Effects of photoperiod on reproduction of cattle: a review. Biol. Rhythm Res., 53: 1950–1960. Search in Google Scholar

Parkunan T., Kumar R.D., Chandrasekar T., Preedaa M.G., Selvan A.S., Barathi M.S., Bharathy S., Prakash M.A., Sheikh A.A. (2015). Production aspect of photoperiodism in dairy cattle. Int. Curr. Res. Aca. Rev., 3: 118–125. Search in Google Scholar

Patbandha T.K., Swain D.K., Pathak R., Mohapatra S.K., Sahoo S.K. (2016). Photoperiodic manipulation for augmentation of dairy animal performance. Int. J. Sci. Environ. Technol., 5: 4594–4601. Search in Google Scholar

Peichl L. (2005). Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 287: 1001–1012. Search in Google Scholar

Penev T., Radev V., Slavov T., Kirov V., Dimov D., Atanassov A., Marinov I. (2014). Effect of lighting on the growth, development, behaviour, production and reproduction traits in dairy cows. Int. J. Curr. Microbiol. App. Sci., 3: 798–810. Search in Google Scholar

Phillips C.J.C., Lomas C.A. (2001). The perception of color by cattle and its influence on behavior. J. Dairy Sci., 84: 807–813. Search in Google Scholar

Phillips C.J.C., Morris I.D., Lomas C.A., Lockwood S.J. (2000). The locomotion of dairy cows in passageways with different light intensities. Anim. Welfare, 9: 421–431. Search in Google Scholar

Piggins D., Phillips C.J. (1996). The eye of the domesticated sheep with implications for vision. Anim. Sci., 62: 301–308. Search in Google Scholar

Potter J.T., Hallowell D.G., Bowen I.M. (2008). Ultrasonographic anatomy of the bovine eye. Vet. Radiol. Ultrasound, 49: 172–175. Search in Google Scholar

Preitner N., Damiola F., Luis Lopez M., Zakany J., Duboule D., Albrecht U., Schibler U. (2002). The orphan nuclear receptor REV–ERB[alpha] controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell, 110: 251–260. Search in Google Scholar

Purves D., Augustine G.J., Fitzpatrick D., Katz L., LaMantia A.S., McNamara J., Williams M.S. (2001). Neuroscience. Sunderland (MA): Sinauer Associates, The Retina, 2nd Edition, https://www.ncbi.nlm.nih.gov/books/NBK10885/ Search in Google Scholar

Rao T.K.S., Kumar B., Singh A., Sriranga K.R., Patel V.A., Chaurasia S. (2017). Photoperiod management in dairy herd: A review. Int. J. Sci. Environ. Technol., 6: 669–683. Search in Google Scholar

Rehkämper G., Görlach A. (1998). Visual identification of small sizes by adult dairy cattle. J. Dairy Sci., 81: 1574–1580. Search in Google Scholar

Rehkämper G., Perrey A., Werner C.W., Opfermann-Rüngeler C., Görlach A. (2000). Visual perception and stimulus orientation in cattle. Vision Res., 40: 2489–2497. Search in Google Scholar

Reiter R.J., Tan D.X., Rosales-Corral S., Galano A., Zhou X.J., Xu B. (2018|). Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules, 24: 509. Search in Google Scholar

Reppert S.M., Weaver D.R. (2002). Coordination of circadian timing in mammals. Nature, 418: 935–941. Search in Google Scholar

Richards J., Gumz M.L. (2012). Advances in understanding the peripheral circadian clocks. Faseb J., 26: 3602–3613. Search in Google Scholar

Rius A.G., Connor E.E., Capuco A.V., Kendall P.E., Auchtung-Montgomery T.L., Dahl G.E. (2005). Long day photoperiod that enhances puberty does not limit body growth in Holstein heifers. J. Dairy Sci., 88: 4356–4365. Search in Google Scholar

Rius A.G., Dahl G.E. (2006). Short communication: Exposure to long day photoperiod prepubertally increases milk yield in primiparous heifers. J. Dairy Sci., 89: 2080–2083. Robins A. (2019). The alpha hypothesis: did lateralized cattle–human interactions change the script for western culture? Animals, 9: 638. Search in Google Scholar

Robins A., Goma A.A., Ouine L., Phillips C.J.C. (2018). The eyes have it: Lateralized coping strategies in cattle herds responding to human approach. Anim. Cogn., 21: 685–702. Robins A., Phillips C. (2010). Lateralised visual processing in domestic cattle herds responding to novel and familiar stimuli. Laterality, 15: 514–534. Search in Google Scholar

Salfer I.J., Bartell P.A., Dechow C.D., Harvartine K.J. (2020). Annual rhythms of milk synthesis in dairy herds in 4 regions of the United States and their relationships to environmental indicators. J. Dairy Sci., 103: 3696–3707. Search in Google Scholar

Šístková M., Peterka A., Peterka B. (2010). Light and noise conditions of buildings for breeding dairy cows. Res. Agric. Eng., 56: 92–98. Search in Google Scholar

Šoch M. (2005). Effect of environment on selected indices of cattle welfare (in Czech). Jihočeská univerzita v Českých Budějovicích, Zemědělská fakulta, České Budějovice, Czechia, 1st Edition, 287 pp. Search in Google Scholar

Son J., Park J., Kang D., Belal S.A., Cha J., Shim K. (2020). Effects of white, yellow, and blue colored LEDs on milk production, milk composition, and physiological responses in dairy cattle. Anim. Sci. J., 91: e13337. Search in Google Scholar

Spicer L.J., Buchanan B.A., Chapin L.T., Tucker H.A. (2007). Effect of exposure to various durations of light on serum insulin-like growth factor-I in prepubertal Holstein heifers. Am. J. Anim. Sci., 2: 42–45. Search in Google Scholar

Starby L.A. (2006). Book on lighting: A basis for planning lighting systems (in Swedish). Ljuskultur: Stockhol, Sweden, 489 pp. Search in Google Scholar

Statens jordbruksverks författningssamling (SJVFS). 2017:24. Regulations and general advice of the Swedish Board of Agriculture about cattle husbandry within agriculture (in Swedish). Swedish Board of Agriculture, Jönköping, Sweden, pp. 1–23. Search in Google Scholar

Suarez-Trujillo A., Wernert G., Sun H., Steckler T.S., Huff K., Cummings S., Franco J., Klopp R.N., Townsend J.R., Grott M., Johnson J.S., Plaut K., Boerman J.P., Casey T.M. (2020). Exposure to chronic light-dark phase shifts during the prepartum nonlactating period attenuates circadian rhythms, decreases blood glucose, and increases milk yield in the subsequent lactation. J. Dairy Sci., 103: 2784–2799. Search in Google Scholar

Teng Z.W., Yang G.Q., Wang L.F., Fu T., Lian H.X., Sun Y., Han L.Q., Zhang L.Y., Gao T.Y. (2021). Effects of the circadian rhythm on milk composition in dairy cows: Does day milk differ from night milk? J. Dairy Sci., 104: 8301–8313. Search in Google Scholar

The Danish Agricultural Advisory Center (DAAC). (2002). Housing design for cattle — Danish recommendations. Interdisciplinary Report, 3rd Edition, 123 pp. Search in Google Scholar

Troscianko J., Wilson-Aggarwal J., Griffiths D., Spottiswoode C.N., Stevens M. (2017). Relative advantages of dichromatic and trichromatic color vision in camouflage breaking. Behav. Ecol., 28: 556–564. Search in Google Scholar

Uvnas-Moberg K., Petersson M. (2005). Oxytocin, a mediator of anti-stress, well-being, social interaction, growth and healing (in German). Psychosom. Med. Psychother., 51: 57–80. Search in Google Scholar

Valenzuela-Jimenez N., Rodriguez-Hernandez K., Hernandez-Ceron J., Vera-Avila H., Nunez-Harnandez G., Villa-Godoy A. (2015). 16 Hours photoperiod in Holstein heifer in sub-tropics: Effect in development and age to first estrus. Ecosistemas Recur. Agropecu., 2: 53–67. Search in Google Scholar

Valtonen M., Niskanen L., Kangas A.-P., Koskinen T. (2005). Effect of melatonin-rich nighttime milk on sleep and activity in elderly institutionalized subjects. Nord. J. Psychiat., 59: 217–221. Search in Google Scholar

Velasco J.M., Reid E.D., Fried K.K., Gressley T.F., Wallace R.L., Dahl G.E. (2008). Short-day photoperiod increases milk yield in cows with a reduced dry period length. J. Dairy Sci., 91: 3467–3473. Search in Google Scholar

Wang Y., Guo W., Xu H., Tang K., Zan L., Yang W. (2019). Melatonin suppresses milk fat synthesis by inhibiting the mTOR signaling pathway via the MT1 receptor in bovine mammary epithelial cells. J. Pineal Res., 67: e12593. Search in Google Scholar

Weng S., Wong K.Y., Berson D.M. (2009). Circadian modulation of melanopsin-driven light response in rat ganglion-cell photoreceptors. J. Biol. Rhythm., 24: 391–402. Search in Google Scholar

Wilson A.M., Wright T.C., Cant J.P., Osborne V.R. (2022). Preferences of dairy cattle for supplemental light-emitting diode lighting in the resting area. Animals, 12: 1894. Search in Google Scholar

Wright J., Shelford T. (2013). Light spectrum and its implications on milk production. Dairy Business, 27–28, https://hdl.handle.net/1813/36800 Search in Google Scholar

Wu H., Yao S.,Wang T., Wang J., Ren K., Yang H., Ma W., Ji P., Lu Y., Ma H., He C.,Wei W., Zhang L., Liu G. (2021). Effects of melatonin on dairy herd improvement (DHI) of Holstein cow with high SCS. Molecules, 26: 834. Search in Google Scholar

Zeder M.A. (2012). Pathways to animal domestication. In: Biodiversity in agriculture: domestication, evolution, and sustainability, Gepts P., Famula T.R., Bettinger R.L., Brush S.B., Damania A.B., McGuire P.E., Qualset C.O. (eds). Cambridge University Press, pp. 227–259. Search in Google Scholar

Zhang C., Clough S.J., Adamah-Biassi E.B., Sveinsson M.H., Hutchinson A.J., Miura I., Furuse T., Wakana S., Matsumoto Y.K., Okanoya K., Hudson R.L., Kato T., Dubocovich M.L., Kasahara T. (2021). Impact of endogenous melatonin on rhythmic behaviors, reproduction, and survival revealed in melatonin-proficient C57BL/6J congenic mice. J. Pineal Res., 71: e12748. Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine