À propos de cet article

Citez

Abarike E.D., Cai J., Lu Y., Yu H., Chen L., Jian J., Tang J., Jun L., Kuebutornye F.K.A (2018 a). Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth., immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol., 82: 229–238. Search in Google Scholar

Abarike E.D., Jian J., Tang J. et al. (2018 b). Influence of traditional Chinese medicine and Bacillus species (TCMBS) on growth., immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Aquac. Res., 49: 2366–2375. Search in Google Scholar

Addo S., Carrias A.A., Williams M.A., Liles M.R., Terhune J.S., Davis D.A. (2017). Effects of Bacillus subtilis strains and the prebiotic Previda® on growth, immune parameters and susceptibility to Aeromonas hydrophila infection in Nile tilapia, Oreochromis niloticus. Aquacult. Res., 48: 4798–4810. Search in Google Scholar

Addo S., Carrias A.A., Williams M.A., Liles M.R., Terhune J.S., Davis D.A. (2017). Effects of Bacillus subtilis strains on growth, immune parameters., and Streptococcus iniae susceptibility in Nile tilapia, Oreochromis niloticus. J. World Aquacult. Soc., 48: 257–267. Search in Google Scholar

Adeoye A.A., Jaramillo-Torres A., Fox S.W., Merrifield D.L., Davies S.J. (2016). Supplementation of formulated diets for tilapia (Oreochromis niloticus) with selected exogenous enzymes: Overall performance and effects on intestinal histology and microbiota. Anim. Feed Sci. Technol., 215: 133–143. Search in Google Scholar

Adeoye A.A., Yomla R., Jaramillo‐Torres A., Rodiles A., Merrifield D.L., Davies S.J. (2016). Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture, 463: 61–70. Search in Google Scholar

Adorian T.J., Jamali H., Farsani H.G., Darvishi P., Hasanpour S., Bagheri T., Roozbehfar R. (2018). Effects of probiotic bacteria Bacillus on growth performance., digestive enzyme activity., and hematological parameters of Asian Sea bass., Lates calcarifer (Bloch). Prob. Antimicrob. Prot., 11: 1–8. Search in Google Scholar

Agung L.A., Yuhana M. (2015). Application of micro-encapsulated probiotic Bacillus NP5 and prebiotic mannan oligosaccharide (MOS) to prevent streptococcosis on tilapia Oreochromis niloticus. Res. J. Microbiol., 10: 571. Search in Google Scholar

Al-AjlaniM.M., Hasnain S. (2010). Bacteria exhibiting antimicrobial activities; screening for antibiotics and the associated genetic studies. Open Conf. Proc J., 1: 230–238. Search in Google Scholar

Allameh S.K., Yusoff F.M., Ringø E., Daud H.M., Saad C.R., Ideris A. (2016). Effects of dietary mono‐and multiprobiotic strains on growth performance., gut bacteria and body composition of Javanese carp (Puntius gonionotus., B leeker 1850). Aquacult. Nutr., 22: 367–373. Search in Google Scholar

Aly S.M., Ahmed Y.A.G., Ghareeb A.A.A., Mohamed M.M. (2008). Studies on Bacillus subtilis and Lactobacillus acidophilus., as potential probiotics., on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol., 25: 128e36. Search in Google Scholar

Aly S.M., Mohamed M.F., John G. (2008). Effect of probiotics on survival., growth and challenge infection in Tilapia nilotica (Oreochromis niloticus). Aquacult. Res., 39: 647–656. Search in Google Scholar

Amin M., Rakhisi Z., Ahmady A.Z. (2015). Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties. Avicenna J. Clin Microb. Infec., 2: 10–13. Search in Google Scholar

Amir I., Zuberi A., Kamran M., Imran M. (2019). Evaluation of the commercial application of dietary encapsulated probiotic (Geotrichum candidum QAUGC01): Effect on growth and immunological indices of rohu (Labeo rohita., Hamilton 1822) in semi-intensive culture system. Fish Shellfish Immunol., 95: 464–472. Search in Google Scholar

Andriani Y.U.L.I., Anna., Z.U.Z.Y., Iskandar S.Z., Wiyatna M.F. (2019). The effectiveness of commercial probiotics appropriation on feed on nile tilapia (Oreochromis niloticus)’s growth and feed conversion ratio. Asian J. Microbiol. Biotechnol. Environ. Sci., 21: 1–4. Search in Google Scholar

Bastos Gomes G., Jerry D.R., Miller T.L., Hutson K.S. (2017). Current status of parasiticiliates Chilodonella spp. (Phyllopharyngea: Chilodonellidae) in freshwater fish aquaculture. J. Fish Dis., 40: 703–715. Search in Google Scholar

Buruiană C.T., Profir A.G., Vizireanu C. (2014). Effects of probiotic Bacillus species in aquaculture – an overview. The Annals of the University Dunarea de Jos of Galati. Fascicle VI-Food Technol., 38: 9–17. Search in Google Scholar

Camargo J.A., Alonso Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int., 32: 831–849. Search in Google Scholar

Carbone D., Faggio C. (2016). Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax. Fish Shellfish Immunol., 54: 172–178. Search in Google Scholar

Cerezuela R., Guardiola F.A., González P., Meseguer J., Esteban M.Á. (2012) Effects of dietary Bacillus subtilis., Tetraselmischuii., and Phaeodactylum tricornutum, singularly or in combination, on the immune response and disease resistance of sea bream (Sparus aurata L.). Fish Shellfish Immunol., 33: 342–349. Search in Google Scholar

Chen S., Liu C., Hu S. (2019). Dietary administration of probiotic Paenibacillus ehimensis NPUST1 with bacteriocin-like activity improves growth performance and immunity against Aeromonas hydrophila and Streptococcus iniae in Nile tilapia (Oreochromisniloticus). Fish Shellfish Immunol., 84: 695–703. Search in Google Scholar

Choudhury T.G., Kamilya D. (2018). Paraprobiotics: an aquaculture perspective. Rev. Aquac., 1–13. Search in Google Scholar

Dagá P., Feijoo G., Moreira M.T., Costas D., Villanueva A.G., Lema J.M. (2013). Bioencapsulated probiotics increased survival., growth and improved gut flora of turbot (Psetta maxima) larvae. Aquacult. Int., 21: 337–345. Search in Google Scholar

Dawood M.A., Koshio S., Esteban M.Á. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aquacult., 10: 950–974. Search in Google Scholar

Dawood M.A., Metwally A.E.S., El-Sharawy M.E., Atta A.M., Elbialy Z.I., Abdel-Latif H.M., Paray B.A. (2020). The role of β-glucan in the growth., intestinal morphometry., and immune-related gene and heat shock protein expressions of Nile tilapia (Oreochromis niloticus) under different stocking densities. Aquaculture, 523: 735205. Search in Google Scholar

de Almada C.N., Almada C.N., Martinez R.C., Sant’Ana A.S (2016). Paraprobiotics: Evidences on their ability to modify biological responses., inactivation methods and perspectives on their application in foods. Trends Food Sci. Technol., 58: 96–114. Search in Google Scholar

Elabd H., Faggio C., Mahboub H.H., Emam M.A., Kamel S., E.l Kammar R., Matter A. (2022). Mucuna pruriens seeds extract boosts growth., immunity., testicular histology., and expression of immune-related genes of mono-sex Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 127: 672–680. Search in Google Scholar

Elabd H., Youssuf H., Mahboub H.H., Salem S.M., Husseiny W.A., Khalid A., Faggio C. (2022). Growth., hemato-biochemical., immune-antioxidant response., and gene expression in Nile tilapia (Oreochromis niloticus) received nano iron oxide-incorporated diets. Fish Shellfish Immunol., 128: 574–581. Search in Google Scholar

EL-Haroun E.R.,. Goda A.M.A.S., Kabir Chowdhury M.A. (2006). Effect of dietary probiotic Biogen supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus (L.). Aquacult. Res., 37: 1473–1480. Search in Google Scholar

El‐Haroun E.R.., Goda A.S., Kabir Chowdhury M.A. (2006). Effect of dietary probiotic Biogen® supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus (L.). Aquacult. Res., 37: 1473–1480. Search in Google Scholar

El-Saadony M. T., Alagawany M., Patra A.K., Kar I., Tiwari R., Dawood M.A., Abdel-Latif H.M (2021). The functionality of probiotics in aquaculture: an overview. Fish Shellfish Immunol., 117: 36–52. Search in Google Scholar

Elsabagh M., Mohamed R., Moustafa EM., Hamza A., Farrag F., Decamp O., Dawood M.A.O., Eltholth M. (2018). Assessing the impact of Bacillus strains mixture probiotic on water quality., growth performance., blood profile and intestinal morphology of Nile tilapia., Oreochromis niloticus. Aquac. Nutr., 24: 1–10. Search in Google Scholar

Elumalai P., Kurian A., Lakshmi S., Faggio C., Esteban M.A., Ringø E. (2020). Herbal immunomodulators in aquaculture. Rev. Fish. Sci. Aquacult., 29: 33–57. Search in Google Scholar

Elumalai P., Kurian A., Lakshmi S., Musthafa MS., Ringo E., Faggio C. (2021). Effect of Leucas Aspera Against Aeromonas Hydrophila in Nile Tilapia (Oreochromis Niloticus): Immunity and Gene Expression Evaluation. Turk. J. Fish. Aquatic. Sci., 22. Search in Google Scholar

Falcinelli S., Picchietti S., Rodiles A., Cossignani L., Merrifield D.L., Taddei A.R. (2015). Lactobacillus rhamnosus lowers zebrafish lipid content bychanging gut microbiota and host transcription of genes involved in lipid metabolism. Sci. Rep., 5: 9336. Search in Google Scholar

FAO (2018). Food and Agriculture Organization of the United Nations. Global aquaculture production 1950–2016.. Retrieved from http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en Search in Google Scholar

Fathi M., Dickson C., Dickson M., Leschen W., Baily J., Muir F., Ulrich K., Weidmann M. (2017). Identification of Tilapia Lake Virus in Egypt in Nile tilapia affected by ‘summer mortality’ syndrome. Aquaculture, 473: 430–432. Search in Google Scholar

Galagarza O.A., Smith S.A., Drahos D.J., Eifert J.D., Williams R.C., Kuhn D.D. (2018). Modulation of innate immunity in Nile tilapia (Oreochromis niloticus) by dietary supplementation of Bacillus subtilis endospores. Fish Shellfish Immunol., 83: 171–179. Search in Google Scholar

Garcia-Marengoni N., Cézar de Moura M., Escocard de Oliveira N.T., Bombardelli R.A., Menezes-Albuquerque D. (2015). Uso de los probióticos Bacillus cereus var. toyoi y Bacillus subtilis C-3102 en la dieta de juveniles de tilapia del Nilo cultivada en jaulas. Latin Am. J. Aquatic. Res., 43: 601–606. Search in Google Scholar

Geng X., Dong X.H., Tan B.P. (2012). Effects of dietary probiotic on the growth performance., non-specific immunity and disease resistance of cobia., Rachycentron canadum. Aquac. Nutr., 18: 46–55. Search in Google Scholar

Gobi N., Vaseeharan B., Chen J.C., Rekha R., Vijayakumar S., Anjugam M. (2018). Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance., mucus and serum immune parameters., antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish Shellfish Immunol., 74:501–508. Search in Google Scholar

Gobi N., Vaseeharan B., Chen J.C., Rekha R., Vijayakumar S., Anjugam M., Iswarya A. (2018). Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance., mucus and serum immune parameters., antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in Tilapia Oreochromis mossambicus. Fish shellfish immunol 74: 501-508. Search in Google Scholar

Grubbs K.J., Bleich R.M., Santa Maria K.C., Allen SE., Farag S., Shank E.A. (2017). Large-Scale bioinformatics analysis of Bacillus genomes uncovers conserved roles of natural products in bacterial physiology. mSystems 2(6). Search in Google Scholar

Hamed H.S., Ismal S.M., Faggio C. (2021). Effect of allicin on antioxidant defense system., and immune response after carbofuran exposure in Nile tilapia., Oreochromis niloticus Comp Biochem Physiol Part C: Toxicol. Pharmacol., 240: 108919. Search in Google Scholar

Han B., Long W., He J., Liu Y., Si Y., Tian L. (2015). Effects of dietary Bacillus licheniformis on growth performance., immunological parameters., intestinal morphology and resistance of juvenile Nile tilapia (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol. 46: 225–231. Search in Google Scholar

Hassaan MS., Mohammady EY., Soaudy MR., Elashry MA., Moustafa MM., Wassel MA., Elsaied HE (2021) Synergistic effects of Bacillus pumilus and exogenous protease on Nile tilapia (Oreochromis niloticus) growth., gut microbes., immune response and gene expression fed plant protein diet. Ani Feed Sci Technol. 275: 114892 Search in Google Scholar

Hassaan M.S., Soltan M.A., Jarmołowicz S., Abdo H.S. (2018). Combined effects of dietary malic acid and Bacillus subtilis on growth., gut microbiota and blood parameters of Nile tilapia (Oreochromis niloticus). Aquac Nutr., 24:83–93. Search in Google Scholar

He S., Zhang Y., Xu L., Yang Y., Marubashi T., Zhou Z., Yao B. (2013). Effects of dietary Bacillus subtilis C-3102 on the production., intestinal cytokine expression and autochthonous bacteria of hybrid tilapia Oreochromis niloticus × Oreochromis aureus. Aquacult., 412:125–130. Search in Google Scholar

Hlordzi V., Kuebutornye F. K., Afriyie G., Abarike E.D., Lu Y., Chi S., Anokyewaa M. A. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquacult. Rep., 18: 100503 Search in Google Scholar

Hoseinifar S.H., Shakouri M., Yousefi S., Van Doan H., Shafiei S., Yousefi M., Faggio C. (2020). Humoral and skin mucosal immune parameters., intestinal immune related genes expression and antioxidant defense in rainbow trout (Oncorhynchus mykiss) fed olive (Olea europea L.) waste. Fish Shellfish Immunol., 100: 171-178. Search in Google Scholar

Hui C., Wei R., Jiang H., Zhao Y., Xu L. (2019). Characterization of the ammonification., the relevant protease production and activity in a high-efficiency ammonifier Bacillus amyloliquefaciens DT. Int Biodeteri Biodeg., 142: 11-17. Search in Google Scholar

Hura MUD., Zafar T., Borana K., Prasad JR., Iqbal J (2018) Effect of commercial probiotic Bacillus megaterium on water quality in composite culture of major carps. Int J Cur Agricult. Sci., 8(1): 268-273 Search in Google Scholar

Irianto B., Austin., (2002) Probiotics in aquaculture. J Fish Dis., 25: 633–642. Search in Google Scholar

Iwashita M.K.P., Nakandakare I.B., Terhune J.S et al. (2015). Dietary supplementation with Bacillus subtilis., Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus. Fish Shellfish Immunol., 43:60–66. Search in Google Scholar

Joffre OM., Poortvliet PM., Klerkx L. (2018). Are shrimp farmers actual gamblers? An analysis of risk perception and risk management behaviors among shrimp farmers in the Mekong Delta. Aquacult., 495 : 528-537. Search in Google Scholar

Kavitha M., Raja M., Perumal P. (2018). Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton., 1822). Aquac Rep., 11:59–69. Search in Google Scholar

Kim Y.A., Keogh J.B., Clifton P.M. (2018). Probiotics., prebiotics., synbiotics and insulin sensitivity. Nutr Res Rev 31: 35–51. Search in Google Scholar

Kuebutornye F.K., Abarike E.D., Lu Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish shellfish Immunol., 87: 820-828. Search in Google Scholar

Kuebutornye F.K., Abarike E.D., Lu Y., Hlordzi V., Sakyi ME., Afriyie G., Xie C.X (2020). Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish physiol biochem 46(3): 819-841. Search in Google Scholar

Kuebutornye F.K., Abarike E.D., Sakyi M.E., Lu Y., Wang Z. (2020). Modulation of nutrient utilization., growth., and immunity of Nile tilapia., Oreochromis niloticus: the role of probiotics. Aquacult Int., 28(1): 277-291 Search in Google Scholar

Kuebutornye F.K., Lu Y., Abarike E.D., Wang Z., Li Y., Sakyi M.E. (2020). In vitro assessment of the probiotic characteristics of three Bacillus species from the gut of nile tilapia., oreochromis niloticus. Probiotics antimicrobe. Proteins., 12(2): 412-424. Search in Google Scholar

Kuebutornye F.K., Wang Z., Lu Y., Abarike ED., Sakyi ME., Li Y., Hlordzi V .(2020). Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile Tilapia., Oreochromis niloticus and its resistance against Aeromonas hydrophila infection. Fish shellfish Immunol., 97: 83-95. Search in Google Scholar

Kuebutornye F.K.A., Abarike E.D., Lu Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol., 87:820–828. Search in Google Scholar

Kurian A., Lakshmi S., Fawole F.J., Faggio C., Elumalai P. (2021). Combined effects of Leucas aspera., oxy-cyclodextrin and bentonite on the growth., serum biochemistry., and the expression of immune-related gene in Nile tilapia (Oreochromis niloticus). Turkish J Fisheries Aquatic. Sci., 21(3): 147-158 Search in Google Scholar

Lee J.M., Jang W.J., Hasan M.T., Lee B.J., Kim K.W., Lim S.G., Kong I.S. (2019). Characterization of a Bacillus sp. isolated from fermented food and its synbiotic effect with barley β-glucan as a biocontrol agent in the aquaculture industry. Applied microbiol and biotechnol 103(3): 1429-1439 Search in Google Scholar

Lehri B., Seddon A.M., Karlyshev A.V. (2017). Potential probiotic-associated traits revealed from completed high quality genome sequence of Lactobacillus fermentum 3872. Stand Genom Sci 12(1): 19. Search in Google Scholar

Li X., Ringø E., Hoseinifar S.H. (2018). The adherence and colonization of microorganisms in fish gastrointestinal tract. Rev Aqua:1–16 DOI:10.1111/raq.12248 Search in Google Scholar

Liu H., Wang S., Cai Y., Guo X., Cao Z., Zhang Y., Zhou Y. (2017). Dietary administration of Bacillus subtilis HAINUP40 enhances growth., digestive enzyme activities., innate immune responses and disease resistance of tilapia., Oreochromis niloticus. Fish shellfish immunol 60: 326-333. Search in Google Scholar

Liu H.T., Wang S.F., Cai Y., Guo X.H., Cao Z.J., Zhang Y.Z., et al. (2017b). Dietary administration of Bacillus subtilis HAINUP40 enhances growth., digestive enzyme activities., innate immune responses and disease resistance of tilapia., Oreochromis niloticus. Fish Shellfish Immunol. 60: 326e33. Search in Google Scholar

Liu Q., Wen L., Pan X., Huang Y., Du X., Qin J., Lin Y. (2021). Dietary supplementation of Bacillus subtilis and Enterococcus faecalis can effectively improve the growth performance., immunity., and resistance of tilapia against Streptococcus agalactiae. Aquacult Nutri. 27(4) : 1160-1172. Search in Google Scholar

Liu Y., Yao Y., Li H., Qiao F., Wu J., Du Zy., Zhang M. (2016). Influence of endogenous and exogenous estrogenic endocrine on intestinal microbiota in zebrafish. PLoS ONE 11 (10): e0163895. Search in Google Scholar

Loh J.Y. (2017). The role of probiotics and their mechanisms of action: an aquaculture perspective. World Aquac., 48: 19-23. Search in Google Scholar

Luis-Villaseñor I.E., Macías-Rodríguez M.E., Gómez-Gil B., Ascencio-Valle F., Campa-Córdova Á.I. (2011). Beneficial effects of four Bacillus strains on the larval cultivation of Litopenaeus vannamei., Aquacult., 321: 136–144. Search in Google Scholar

Lumsangkul C., Linh N.V., Chaiwan F., Abdel-Tawwab M., Dawood MA., Faggio C., Van Doan H (2022) Dietary treatment of Nile tilapia (Oreochromis niloticus) with aquatic fern (Azolla caroliniana) improves growth performance., immunological response., and disease resistance against Streptococcus agalactiae cultured in bio-floc system. Aquacult. Rep., 24: 101114. Search in Google Scholar

MacARTHUR J.I., FLETCHER T.C. (1985). Phagocytosis in fish. In Fish immunology (pp. 29-46). Academic Press. https://doi.org/10.1016/B978-0-12-469230-5.50007-6 Search in Google Scholar

Magnadóttir B. (2006). Innate immunity of fish (overview). Fish Shellfish Immunol. 20: 137–151. Search in Google Scholar

Makled S.O., Hamdan A.M., El‐Sayed A.F.M (2019) Effects of dietary supplementation of a marine thermotolerant bacterium., Bacillus paralicheniformis SO‐1., on growth performance and immune responses of Nile tilapia., Oreochromis niloticus. Aquacult Nutr., 25(4): 817-827. Search in Google Scholar

McKeen C.D., Reilly C.C., Pusey P.L. (1985). Production and partial characterization of antifungal substances antagonistics to Monilinia fructicola from Bacillus subtilis. Phytopathol., 76:136–139. Search in Google Scholar

Mohamed M.H., Refat N.A,A. (2011). Pathological evaluation of probiotic., Bacillus subtilis., against Flavobacterium columnare in Tilapia nilotica (Oreochromis niloticus) fish in Sharkia Governorate., Egypt. The JAmerican. Sci., 7(2): 244-256. Search in Google Scholar

Moustafa E.M., Farrag F.A., Dawood M.A., Shahin K., Hamza A., Decamp O., Omar A.A. (2021). Efficacy of Bacillus probiotic mixture on the immunological responses and histopathological changes of Nile Tilapia (Oreochromis niloticus., L) challenged with Streptococcus iniae. Aquacult Res., 52(5): 2205-2219. Search in Google Scholar

Mulyadin A., Widanarni W., Yuhana M., Wahjuningrum D. (2021). Growth performance., immune response., and resistance of Nile tilapia fed paraprobiotic Bacillus sp. NP5 against Streptococcus agalactiae infection. J Akuak Ind 20(1): 34-46. Search in Google Scholar

Naderi Samani M., Jafaryan H., Gholipour H., Harsij M., Farhangi M. (2016). Effect of different concentration of profitable Bacillus on bioremediation of common carp (Cyprinus carpio) pond discharge. Iranian J Aquatic Ani Health. 2(2): 44-54. Search in Google Scholar

Narimbi J., Mazumder D., Sammut J. (2018). Stable isotope analysis to quantify contributions of supplementary feed in Nile Tilapia Oreochromis niloticus (GIFT strain) aquaculture. Aquac. Res., 49: 1866–1874. Search in Google Scholar

Nayak S.K. (2010). Probiotics and immunity: a fish perspective. Fish Shellfish Immunol.,29:2–14. Search in Google Scholar

Nayak S.K. (2010). Role of gastrointestinal microbiota in fish. Aquacult. Res., 41(11): 1553-1573. Search in Google Scholar

Ng W.K., Kim Y.C., Romano N., Koh C.B., Yang S.Y. (2014). Effects of dietary probiotics on the growth and feeding efficiency of red hybrid tilapia., Oreochromis sp.., and subsequent resistance to Streptococcus agalactiae. J Appl. Aquacult., 26(1): 22-31. Search in Google Scholar

Niu K.M., Khosravi S., Kothari D., Lee W.D., Lim JM., Lee B.J., Kim S.K. (2019). Effects of dietary multi-strain probiotics supplementation in a low fishmeal diet on growth performance., nutrient utilization., proximate composition., immune parameters., and gut microbiota of juvenile olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 93: 258-268. Search in Google Scholar

Pérez-Sánchez T., Ruiz-Zarzuela I., de Blas I., Balcázar J.L. (2014). Probiotics in aquaculture: a current assessment. Rev. Aquac. 5: 1–14 Search in Google Scholar

Porubcan R.S. (1991). Reduction in chemical oxygen demand and improvement in Penaeus monodon yield in ponds inoculated with aerobic Bacillus bacteria. In Program and Abstract of the 22nd Annual Conference and Exposition of the World Aquacult Soc 1991. World Aquaculture Society https://cir.nii.ac.jp/crid/1570572700330081408 Search in Google Scholar

Porubcan R.S. (1991., June). Reduction of ammonia nitrogen and nitrite in tanks of Penaeus monodon using floating biofilters containing processed diatomaceous earth media pre-inoculated with nitrifying bacteria. In Proceedings of the Program and Abastracts of the 22nd Annual Conference and Exposition (pp. 16-20). World Aquacult Soc., Search in Google Scholar

Ray A.K., Ghosh K., Ringø E.J.A.N. (2012) Enzyme‐producing bacteria isolated from fish gut: a review. Aquacult Nutri., 18(5): 465-492. Search in Google Scholar

Reda RM., Selim K.M. (2015). Evaluation of Bacillus amyloliquefaciens on the growth performance., intestinal morphology., hematology and body composition of Nile tilapia., Oreochromis niloticus. Aquacult Int., 23(1): 203-217. Search in Google Scholar

Reddy K.V., Reddy A.V.K., Babu B.S., Lakshmi T.V. (2018). Applications of Bacillus sp in aquaculture waste water treatment. Int JS Res Sci. Tech 4: 1806-1812. Search in Google Scholar

Ringø E., Zhou Z., Vecino J G., Wadsworth S., Romero J., Krogdahl Å., Merrifield D.L. (2016). Effect of dietary components on the gut microbiota of aquatic animals. A never‐ending story?. Aquacult Nutri 22(2): 219-282 Search in Google Scholar

Ringø E. (2020). Probiotics in shellfish aquaculture. Aquaculture and Fisheries., 5(1): 1-27 Search in Google Scholar

Rout P.R., Bhunia P., Dash R.R. (2017). Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification., aerobic denitrification and denitrifying phosphorous removal. Bioresour. Technol., 244: 484–495. Search in Google Scholar

Samson J., Quiazon K.M., Choresca C. (2020). Application of probiotic Bacillus spp. isolated from African nightcrawler (Eudrilus eugeniae) on Nile Tilapia (Oreochromis niloticus L.). bioRxiv. https://doi.org/10.1101/2020.03.08.982819 Search in Google Scholar

Sánchez B., Delgado S., Blanco-Míguez A., Lourenço A., Gueimonde M., Margolles A. (2017). Probiotics., gut microbiota., and their influence on host health and disease. Mol Nutr Food Res. 61:1–15. Search in Google Scholar

Sankar H., Philip B., Philip R., Singh I.S.B. (2017). Effect of probiotics on digestive enzyme activities and growth of cichlids., Etroplus Probiotics & Antimicro. Prot. suratensis (Pearl spot) and Oreochromis mossambicus (Tilapia). Aquac Nutr., 23: 852–864. Search in Google Scholar

Santos R.A., Oliva-Teles A., Saavedra M.J et al. (2018) Bacillus spp. as source of natural antimicrobial compounds to control aquaculture bacterial fish pathogens. Front Mar Sci., https://doi.org/10.3389/conf.FMARS.2018.06.00129 Search in Google Scholar

Sayes C., Leyton Y., Riquelme C. Probiotic bacteria as an healthy alternative for fish aquaculture. In: Antibiotics use in animals., Savic., S., editor. Rijeka., Croatia: In Tech Publishers., 2018. p. 115–132.DOI:10.5772/intechopen.71206 Search in Google Scholar

Secombes C. (1990). Isolation of salmonid macrophages and analysis of their killing activity. Techniques in fish immunol: 137-154. https://cir.nii.ac.jp/crid/1573105973971052928 Search in Google Scholar

Selim K.M., Reda R.M. (2015). Improvement of immunity and disease resistance in the Nile tilapia., Oreochromis niloticus., by dietary supplementation with Bacillus amyloliquefaciens Fish shellfish Immunol., 44(2): 496-503. Search in Google Scholar

Silo-Suh L.A., Lethbridge B.J., Raffel S.J., et al. (1994). Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol., 60:2023–2030. Search in Google Scholar

Soltan M.A., Fouad I.M., Elfeky A. (2016). Growth and feed utilization of Nile tilapia., Oreochromis niloticus fed diets containing probiotic. Global Veterinaria., 17(5): 442-450. Search in Google Scholar

Soltani M., Ghosh K., Hoseinifar S.H., Kumar V., Lymbery A.J., Roy S., Ringø E. (2019). Genus Bacillus., promising probiotics in aquaculture: aquatic animal origin., bio-active components., bioremediation and efficacy in fish and shellfish. Rev Fisheries Sci. Aquacult., 27(3): 331-379. Search in Google Scholar

Sookchaiyaporn N., Srisapoome P., Unajak S., Areechon N. (2020). Efficacy of Bacillus spp. isolated from Nile tilapia Oreochromis niloticus Linn. on its growth and immunity., and control of pathogenic bacteria. Fisheries sci., 86(2): 353-365. Search in Google Scholar

Srisapoome P., Areechon N ( 2017) Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile Tilapia (Oreochromis niloticus): laboratory and non-farm trials. Fish Shellfish Immunol., 67:199–210. Search in Google Scholar

Standen B.T.., Rodiles A., Peggs D.L., Davies S.J., Santos G.A., Merrifield D.L (2015) Modulation of the intestinal microbiota and morphology of tilapia., Oreochromis niloticus., following the application of a multi-species probiotic. Appl microbiol biotechnol. 99(20): 8403-8417. Search in Google Scholar

Stefanescu I.A (2015). Bioaccumulation of heavy metals by Bacillus megaterium from phosphogypsum waste. Scientific Study & Research. Chemistry & Chemical Engineering., Biotechnology., Food Industry 16(1): 93 Search in Google Scholar

Steinhagen D., Jendrysek S. (1994). Phagocytosis by carp granulocytes; in vivo and in vitro observations. Fish Shellfish Immunol: 4:521e4 Search in Google Scholar

Sumon M.S., Ahmmed F., Khushi S.S., Ahmmed M.K., Rouf M.A., Chisty M.A.H., Sarower M.G. (2018). Growth performance., digestive enzyme activity and immune response of Macrobrachium rosenbergii fed with probiotic Clostridium butyricum incorporated diets. J King Saud Univ - Sci 30:21–28. Search in Google Scholar

Tachibana L., Telli G.S., Dias D.D.C., Gonçalves G.S., Guimarães M.C., Ishikawa C.M., Ranzani‐Paiva M.J.T. (2021). Bacillus subtilis and Bacillus licheniformis in diets for Nile Tilapia (Oreochromis niloticus): Effects on growth performance., gut microbiota modulation and innate immunology. Aquacult Res., 52(4): 1630-1642. Search in Google Scholar

Tang L., Huang K., Xie J., Yu D., Sun Huang Q. (2017). 1-Deoxynojirimycin from Bacillus subtilis improves antioxidant and antibacterial activities of juvenile Yoshitomi tilapia. Electron J Biotechnol .,30:39–47. https://doi.org/10.1016/j.ejbt.2017.08.006 Search in Google Scholar

Tang S., Liu S., Zhang J., Zhou L., Wang X., Zhao Q., Li E. (2020). Relief of hypersaline stress in Nile tilapia Oreochromis niloticus by dietary supplementation of a host-derived Bacillus subtilis strain. Aquaculture 528 : 735542. Search in Google Scholar

Telli G.S., Ranzani-Paiva M.J.T., Dias D.D.C., Sussel F.R., Ishikawa C.M., Tachibana L. (2014). Dietary administration of Bacillus subtilis on hematology and non-specific immunity of Nile tilapia Oreochromis niloticus raised at different stocking densities. Fish Shellfish Immunol., 39:305–311. Search in Google Scholar

Thompson K.D. (2017). Immunology: improvement of innate and adaptive immunity. In Fish Diseases., (pp. 1-17). Academic Press. https://doi.org/10.1016/B978-0-12-804564-0.00001-6 Search in Google Scholar

Thurlow C.M., Williams M.A., Carrias A., Ran C., Newman M., Tweedie J., Allison E., Jescovitch LN., Wilson A.E., Terhune J.S., Liles M.R. (2019). Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquacult. 503: 347–356. Search in Google Scholar

Tort L., Balasch J. C., Mackenzie S. (2003). Fish immune system. A crossroads between innate and adaptive responses. Inmunología 22(3): 277-286 Search in Google Scholar

Trosvik K.A., Webster C.D., Thompson K.R., Metts L.A., Gannam A., Twibell R. (2013). Effects on growth performance and body composition in Nile tilapia., Oreochromis niloticus., fry fed organic diets containing yeast extract and soyabeanmeal as a total replacement of fish meal without amino acid supplementation. Biol Agric Hortic., 29:173–185. Search in Google Scholar

Uribe C., Folch H., Enríquez R., Moran G.J.V.M. (2011). Innate and adaptive immunity in teleost fish: a review. Veterinarni medicina 56(10): 486 Search in Google Scholar

Van Doan H., Hoseinifar SH., Khanongnuch C., Kanpiengjai A., Unban K., Srichaiyo S. (2018). Host-associated probiotics boosted mucosal and serum immunity., disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquacult., 491: 94-100. Search in Google Scholar

Van Doan H., Hoseinifar SH., Khanongnuch C., Kanpiengjai A., Unban K., Van Kim V., Srichaiyo S. (2018). Host-associated probiotics boosted mucosal and serum immunity., disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquacult: 491 94–100. Search in Google Scholar

Van Doan H., Hoseinifar SH., Sringarm K., Jaturasitha S., Yuangsoi B., Dawood M.A., Faggio C (2019) . Effects of Assam tea extract on growth., skin mucus., serum immunity and disease resistance of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae. Fish Shellfish Immunol., 93: 428-435 Search in Google Scholar

Van Hai N. (2015). Research findings from the use of probiotics in tilapia aquaculture: a review. Fish shellfish Immunol., 45(2): 592-597 Search in Google Scholar

Van Hai N. (2015a). The use of medicinal plants as immunostimulants in aquaculture: A review. Aquaculture. 446 : 88-96 Search in Google Scholar

Van Hai N. (2015b). Research findings from the use of probiotics in tilapia aquaculture: a review. Fish Shellfish Immunol., 45: 592–597. Search in Google Scholar

Verbaendert I., Boon N., De Vos P., Heylen K. (2011). Denitrification is a common feature among members of the genus Bacillus. Sys Appl Microbiol 34(5): 385-391. Search in Google Scholar

Wang M., Liu G., Lu M., Ke X., Liu Z., Gao F., Yu D. (2017). Effect of Bacillus cereus as a water or feed additive on the gut microbiota and immunological parameters of Nile tilapia. Aquacult Res 48(6): 3163-3173. Search in Google Scholar

Wilson A.B. (2017). MHC and adaptive immunity in teleost fishes. Immunogenetics 69(8): 521-528. Search in Google Scholar

Wu D.X., Zhao S.M., Peng N., Xu C.P., Wang J., Liang Y.X. (2016). Effects of a probiotic (Bacillus subtilis FY99-01) on the bacterial community structure and composition of shrimp (Litopenaeus vannamei., Boone) culture water assessed by denaturing gradient gel electrophoresis and high-throughput sequencing. Aquac Res., 47: 857–869. Search in Google Scholar

Wu P.S., Liu C.H., Hu S.Y. (2021). Probiotic Bacillus safensis NPUST1 administration improves growth performance., gut microbiota., and innate immunity against streptococcus iniae in Nile tilapia (Oreochromis niloticus). Microorganisms., 9(12): 2494. Search in Google Scholar

Xiang-Hong W., Jun L., Wei-shang J., Huai-shu X. (2003).Application of probiotics in aquaculture. Ocean University of Qungo., Qingdao. Online pp l–10. Search in Google Scholar

Xu J., Xie Y.D., Liu L., Guo S., Su YL., Li A.X. (2019). Virulence regulation of cel‐EIIB protein mediated PTS system in Streptococcus agalactiae in Nile tilapia. J fish dise., 42(1): 11-19. Search in Google Scholar

Yao Y.Y., Chen D.D., Cui Z.W., Zhang X.Y., Zhou Y.Y., Guo X., Zhang Y.A. (2019). Oral vaccination of tilapia against Streptococcus agalactiae using Bacillus subtilis spores expressing Sip. Fish shellfish Immunol., 86: 999-1008. Search in Google Scholar

Yaqub A., Awan N.M., Kamran M., Majeed I. (2022). Evaluation of potential applications of dietary probiotic (Bacillus licheniformis SB3086): Effect on growth., digestive enzyme activity., hematological., biochemical., and immune response of Tilapia (Oreochromis mossambicus). Turkish J Fisheries Aquatic Sci., 22(5): Search in Google Scholar

Yi Y., Zhang Z., Zhao F. (2018). Probiotic potential of Bacillus velezensis JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish Shellfish Immunol., 78:322–330. Search in Google Scholar

Yousuf J., Thajudeen J., Rahiman M., Krishnankutty S., Alikunj A., Abdulla M.H. (2017). Nitrogen fixing potential of various heterotrophic Bacillus strains from a tropical estuary and adjacent coastal regions. J basic microbiol., 57(11): 922-932. Search in Google Scholar

Yukgehnaish K., Kumar P., Sivachandran P., Marimuthu K., Arshad A., Paray BA., Arockiaraj J. (2020). Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. Rev Aquac., 1–25. Search in Google Scholar

Zendeboodi F., Khorshidian N., Mortazavian A.M., da Cruz A.G (2020). Probiotic: conceptualization from a new approach. Curr Opi Food Sci., 32: 103-123. Search in Google Scholar

Zhang C., Zhang J., Fan W., Huang M., Liu M. (2019). Effects of dietary Lactobacillus delbrueckii on growth performance., body composition., digestive and absorptive capacity., and gene expression of common carp (Cyprinus carpio Huanghe var). Aquacult Nutri. 25(1): 166-175. Search in Google Scholar

Zhang D., Gao Y., Ke X., Yi M., Liu Z., Han X., Lu M. (2019). Bacillus velezensis LF01: in vitro antimicrobial activity against fish pathogens., growth performance enhancement., and disease resistance against streptococcosis in Nile tilapia (Oreochromis niloticus). Appl Microbiol Biotechnol., 103(21): 9023-9035. Search in Google Scholar

Zhang Y., Zhang H. (2013). The effect of probiotics on lipid metabolism. INTECH: 443–460. Search in Google Scholar

Zhao D.F.., Wu W.L., Zhang Y.B., Liu Q.Y., Yang H., Zhao C. (2011). Study on the isolation., identification of a petroleum hydrocarbon degrading Bacillus fusiformis sp. bacteria and its influence of environmental factors on the degradation efficiency. China Petrol Proc. Petro Technol., 13: 74–82. Search in Google Scholar

Zhao G.J. (2014). The screening of antagonistic bacteria and it’s antagonism on the adhesion of Streptococcus agalactiae to the mucus of tilapia (Master): Hainan university; Haikou., China. Search in Google Scholar

Zhou S., Xia Y., Zhu C., Chu W. (2018). Isolation of marine Bacillus sp. with antagonistic and organic-substances-degrading activities and its potential application as a fish probiotic. Mar drugs. 16(6): 196. Search in Google Scholar

Zhou X., Tian Z., Wang Y., Li W. (2010). Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish physiol biochem., 36(3): 501-509. Search in Google Scholar

Zhu C., Yu L., Liu W., Jiang M., He S., Yi G., Liang X. (2019). Dietary supplementation with Bacillus subtilis LT3‐1 enhance the growth., immunity and disease resistance against Streptococcus agalactiae infection in genetically improved farmed tilapia., Oreochromis niloticus. Aquacult Nutri., 25(6): 1241-1249. Search in Google Scholar

Zokaeifar H., Babaei N., Saad CR., Kamarudin MS., Sijam K., Balcazar J.L. (2014). Administration of Bacillus subtilis strains in the rearing water enhances the water quality., growth performance., immune response., and resistance against Vibrio harveyi infection in juvenile white shrimp., Litopenaeus vannamei. Fish Shellfish Immunol., 36: 68–74. Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine