À propos de cet article

Citez

Abdel-Ghany H.M., El-Sisy D.M., Salem M.E.-S. (2023). A comparative study of effects of curcumin and its nanoparticles on the growth, immunity and heat stress resistance of Nile tilapia (Oreochromis niloticus). Sci. Rep., 13: 2523. Search in Google Scholar

Abdel-Tawwab M., Eissa E.-S.H., Tawfik W.A., Abd Elnabi H.E., Saadony S., Bazina W.K., Search in Google Scholar

Ahmed R.A. (2022). Dietary curcumin nanoparticles promoted the performance, antioxidant activity, and humoral immunity, and modulated the hepatic and intestinal histology of Nile tilapia fingerlings. Fish Physiol. Biochem., 48: 585–601. Search in Google Scholar

Abdel‐Tawwab M., Abbass F.E. (2017). Turmeric powder, Curcuma longa L., in common carp, Cyprinus carpio L., diets: growth performance, innate immunity, and challenge against pathogenic Aeromonas hydrophila infection. J. World. Aquacult. Soc., 48: 303–312. Search in Google Scholar

Abdelnour S.A., Alagawany M., Hashem N.M., Farag,M.R., Alghamdi E.S., Hassan F.U., Bilal R.M., Elnesr S.S., Dawood M.A.O., Nagadi S.A., Elwan H.A.M., ALmasoudi A.G., Attia Y.A. (2021). Nanominerals: fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals, 11: 1916. Search in Google Scholar

Abdelnour S.A., Ghazanfar S., Abdel-Hamid M., Abdel-Latif H.M.R., Zhang Z., Naiel M.A.E. (2023). Therapeutic uses and applications of bovine lactoferrin in aquatic animal medicine: an overview. Vet. Res. Commun., 47: 1015–1029. Search in Google Scholar

Abdelnour S.A., Hassan M.A.E., Mohammed A.K., Alhimaidi A.R., Al-Gabri N., Al-Khaldi K.O., Swelum A.A. (2020). The effect of adding different levels of curcumin and its nanoparticles to extender on post-thaw quality of cryopreserved rabbit sperm. Animals, 10: 1508. Search in Google Scholar

Adenaya A., Berger M., Brinkhoff T., Ribas-Ribas M., Wurl O. (2023). Usage of antibiotics in aquaculture and the impact on coastal waters. Mar. Pollut. Bull., 188: 114645. Search in Google Scholar

Alagawany M., Farag M.R., Abdelnour S.A., Dawood M.A., Elnesr S.S., Dhama K. (2021). Curcumin and its different forms: A review on fish nutrition. Aquaculture, 532: 736030. Search in Google Scholar

Alhawas B., Abd El-Hamid M.I., Hassan Z., Ibrahim G.A., Neamat-Allah A.N.F., Rizk El-Ghareeb W., Alahmad B.A.-H.Y., Meligy A.M.A., Abdel-Raheem S.M., Abdel-Moez Ahmed Ismail H., Ibrahim D. (2023). Curcumin loaded liposome formulation: Enhanced efficacy on performance, flesh quality, immune response with defense against Streptococcus agalactiae in Nile tilapia (Orechromis niloticus). Fish Shellfish Immunol., 138: 108776. Search in Google Scholar

Aqmasjed B., Sajjadi M.M., Falahatkar B., Safari R. (2022). Effect of curcumin and ginger extract on growth and biochemical indices in rainbow trout (Oncorhynchus mykiss). J. Aquac. Dev., 16: 35–48. Search in Google Scholar

Baig N., Kammakakam I., Falath W. (2021). Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv., 2: 1821–1871. Search in Google Scholar

Bao X., Chen M., Yue Y., Liu H., Yang Y., Yu H., Yu Y., Duan N. (2022). Effects of dietary nano-curcumin supplementation on growth performance, glucose metabolism, and endoplasmic reticulum stress in juvenile largemouth bass, Micropterus salmoides. Front. Mar. Sci., 9: 924569. Search in Google Scholar

Bondad‐Reantaso M.G., MacKinnon B., Karunasagar I., Fridman S., Alday‐Sanz V., Brun E., Le Groumellec M., Li A., Surachetpong W., Karunasagar I. (2023). Review of alternatives to antibiotic use in aquaculture. Rev Aquac., 15: 1421–1451. Search in Google Scholar

Eissa E.-S.H., Alaidaroos B.A., Jastaniah S.D., Munir M.B., Shafi M.E., Abd El-Aziz Y.M., Bazina W.K., Ibrahim S.B., Eissa M.E.H., Paolucci M., Alaryani F.S., El-Hamed N.N.B.A., El-Hack M.E.A., Saadony S. (2023). Dietary effects of nano curcumin on growth performances, body composition, blood parameters and histopathological alternation in red tilapia (Oreochromis sp.) challenged with Aspergillus flavus. Fishes, 8: 208. Search in Google Scholar

Eissa E.-S.H., Ezzo O.H., Khalil H.S., Tawfik W.A., El-Badawi A.A., Abd Elghany N.A., Mossa M.I., Hassan M.M., Hassan M.M., Eissa M.E.H., Shafi M.E., Hamouda A.H. (2022). The effect of dietary nanocurcumin on the growth performance, body composition, haemato-biochemical parameters and histopathological scores of the Nile tilapia (Oreochromis niloticus) challenged with Aspergillus flavus. Aquac. Res., 53: 6098–6111. Search in Google Scholar

Elabd H., Mahboub H.H., Salem S.M., Abdelwahab A.M., Alwutayd K.M., Shaalan M., Ismail S.H., Abdelfattah A.M., Khalid A., Mansour A.T. (2023). Nano-curcumin/chitosan modulates growth, biochemical, immune, and antioxidative profiles, and the expression of related genes in Nile tilapia, Oreochromis niloticus. Fishes, 8: 333. Search in Google Scholar

Fajardo C., Martinez-Rodriguez G., Blasco J., Mancera J.M., Thomas B., De Donato M. (2022). Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquac. Fish., 7: 185–200. Search in Google Scholar

Farag M.R., Abdelnour S.A., Patra A.K., Dhama K., Dawood M.A.O., Elnesr S.S., Alagawany M. (2021). Propolis: Properties and composition, health benefits and applications in fish nutrition. Fish Shellfish Immunol., 115: 179–188. Search in Google Scholar

Fath El-Bab A.F., Majrashi K.A., Sheikh H.M., Shafi M.E., El-Ratel I.T., Neamat-Allah A.N., El-Raghi A.A., Elazem A.Y.A., Abd-Elghany M.F., Abdelnour S.A. (2022). Dietary supplementation of Nile tilapia (Oreochromis niloticus) with β-glucan and/or Bacillus coagulans: Synergistic impacts on performance, immune responses, redox status and expression of some related genes. Front. Vet. Sci., 9: 1011715. Search in Google Scholar

Fath El-Bab A.F.F., Amer A.A., El-Nawsany M.M., Ibrahim I.H., Gouda A.H., El-Bahlol A.A., Naiel M.A. (2023). Oregano leaf extract dietary administration modulates performance, redox status, intestinal health, and expression of some related genes of Nile tilapia (Oreochromis niloticus L.). Ann. Anim. Sci., DOI: 10.2478/aoas-2023-0068. Search in Google Scholar

Flora G., Gupta D., Tiwari A. (2013). Nanocurcumin: a promising therapeutic advancement over native curcumin. Crit. Rev. Ther. Drug Carrier Syst., 30: 331–368. Search in Google Scholar

Gad H.A., Alshubaily F.A., Alsieni M.A., Tayel A.A., Diab A.M. (2022). Biosynthesis of nano-curcumin/nano-selenium composite and their potentialities as bactericides against fish-borne pathogens. Green Process. Synth., 11: 1098–1107. Search in Google Scholar

George D., Lakshmi S., Sharma A., Prakash S., Siddiqui M., Malavika B., Elumalai P. (2023). Nanotechnology: A novel tool for aquaculture feed development. In: Nanotechnological Approaches to the Advancement of Innovations in Aquaculture. Springer, Cham., pp. 67–88. Search in Google Scholar

Gewida A.G., Abouzed T.K., Abdelghany M.F., Khames D.K., Zayed M.M., Elsawy H.B., AbdEl-Kader M.F., Naiel M.A. (2023). Dietary effect of S-Methylmethionine sulfonium chloride on growth, serum biochemical parameters, body composition, and expression of some related gene in. Ann. Anim. Sci., DOI: 10.2478/aoas-2023-0059. Search in Google Scholar

Ghanbarzadeh A., Farhood B., Noodeh F.A., Mosaed R., Hassanzadeh G., Bagheri H., Najafi M. (2023). Histopathological evaluation of nanocurcumin for mitigation of radiation- induced small intestine injury. Curr. Radiopharm., 16: 57–63. Search in Google Scholar

Gheytasi A., Hosseini Shekarabi S.P., Islami H.R., Mehrgan M.S. (2021). Feeding rainbow trout, Oncorhynchus mykiss, with lemon essential oil loaded in chitosan nanoparticles: effect on growth performance, serum hemato-immunological parameters, and body composition. Aquac. Int., 29: 2207–2221. Search in Google Scholar

Heidari H., Bagherniya M., Majeed M., Sathyapalan T., Jamialahmadi T., Sahebkar A. (2023). Curcumin‐piperine co‐supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother. Res., 37: 1462–1487. Search in Google Scholar

Ji R., Xiang X., Li X., Mai K., Ai Q. (2021). Effects of dietary curcumin on growth, antioxidant capacity, fatty acid composition and expression of lipid metabolism-related genes of large yellow croaker fed a high-fat diet. Br. J. Nutr., 126: 345–354. Search in Google Scholar

Jiang J., Wu X.-Y., Zhou X.-Q., Feng L., Liu Y., Jiang W.-D., Wu P., Zhao Y. (2016). Effects of dietary curcumin supplementation on growth performance, intestinal digestive enzyme activities and antioxidant capacity of crucian carp Carassius auratus. Aquaculture, 463: 174–180. Search in Google Scholar

Kakran M., Sahoo N.G., Tan I.-L., Li L. (2012). Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J. Nanopart. Res., 14: 757. Search in Google Scholar

Kawahara E., Ueda T., Nomura S. (1991). In vitro phagocytic activity of white-spotted char blood cells after injection with Aeromonas salmonicida extracellular products. Fish Pathol., 26: 213–214. Search in Google Scholar

Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25: 402–408. Search in Google Scholar

Maftuch M., Sanoesi E., Farichin I., Saputra B.A., Ramdhani L., Hidayati S., Fitriyah N., Prihanto A.A. (2018). Histopathology of gill, muscle, intestine, kidney, and liver on Myxobolus sp.-infected Koi carp (Cyprinus carpio). J. Parasit. Dis., 42: 137–143. Search in Google Scholar

Mahmoud Al-Sagheer A.A., Reda F.M., Mahgoub S.A., Ayyat M.S. (2017). Dietary curcumin supplement influence on growth, immunity, antioxidant status, and resistance to Aeromonas hydrophila in Oreochromis niloticus. Aquaculture, 475: 16–23. Search in Google Scholar

Mahmoud Bin-Jumah M., Abukhalil M. (2021). 9 - Antiinflammatory natural products from marine algae. In: Inflammation and natural products, S. Gopi, A. Amalraj, A. Kunnumakkara, S. Thomas (eds). Academic Press, pp. 175–203. Search in Google Scholar

Mansour S., Bakry K.A., Alwaleed E.A., Ahmed H., Al-Amgad Z., Mohammed H.H., Emeish W.F.A. (2023). Dietary nanocurcumin impacts blood biochemical parameters and works synergistically with florfenicol in African catfish challenged with Aeromonas veronii. Fishes, 8: 298. Search in Google Scholar

Midhun S.J., Arun D., Edatt L., Sruthi M., Thushara V., Oommen O.V., Sameer Kumar V., Divya L. (2016). Modulation of digestive enzymes, GH, IGF-1 and IGF-2 genes in the teleost, Tilapia (Oreochromis mossambicus) by dietary curcumin. Aquac. Int., 24: 1277–1286. Search in Google Scholar

Mohamed A.A.-R., El-Houseiny W., Abd Elhakeem E.-M., Ebraheim L.L., Ahmed A.I., Abd El-Hakim Y.M. (2020). Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GST genes of Oreochromis niloticus fish: Role of curcumin supplemented diet. Ecotoxicol. Environ. Saf., 188: 109890. Search in Google Scholar

Naiel Ghazanfar S., Negm S.S., Shukry M., Abdel-Latif H.M. (2023). Applications of antimicrobial peptides (AMPs) as an alternative to antibiotic use in aquaculture: a mini-review. Ann. Anim. Sci., 23: 691–701 Search in Google Scholar

Parry Jr R.M., Chandan R.C., Shahani K.M. (1965). A rapid and sensitive assay of muramidase. Proc. Soc. Exp. Biol. Med., 119: 384–386. Search in Google Scholar

Pirani F., Moradi S., Ashouri S., Johari S.A., Ghaderi E., Kim H.P., Yu I.J. (2021). Dietary supplementation with curcumin nanomicelles, curcumin, and turmeric affects growth performance and silver nanoparticle toxicity in Cyprinus carpio. Environ. Sci. Pollut. Res., 28: 64706–64718. Search in Google Scholar

Sarawi W.S., Alhusaini A.M., Fadda L.M., Alomar H.A., Albaker A.B., Aljrboa A.S., Alotaibi A.M., Hasan I.H., Mahmoud A.M. (2021 a). Curcumin and nano-curcumin mitigate copper neurotoxicity by modulating oxidative stress, inflammation, and Akt/GSK-3β signaling. Molecules, 26: 5591. Search in Google Scholar

Sarawi W.S., Alhusaini A.M., Fadda L.M., Alomar H.A., Albaker A.B., Aljrboa A.S., Alotaibi A.M., Hasan I.H., Mahmoud A.M. (2021 b). Nano-curcumin prevents cardiac injury, oxidative stress and inflammation, and modulates TLR4/NF-κB and MAPK signaling in copper sulfate-intoxicated rats. Antioxidants, 10: 1414. Search in Google Scholar

Shafique L., Abdel-Latif H.M., Hassan F.-u., Alagawany M., Naiel M.A., Dawood M.A., Yilmaz S., Liu Q. (2021). The feasibility of using yellow mealworms (Tenebrio molitor): Towards a sustainable aquafeed industry. Animals, 11: 811. Search in Google Scholar

Sruthi M., Nair A.B., Arun D., Thushara V., Sheeja C., Vijayasree A.S., Oommen O.V., Divya L. (2018). Dietary curcumin influences leptin, growth hormone and hepatic growth factors in Tilapia (Oreochromis mossambicus). Aquaculture, 496: 105–111. Search in Google Scholar

Suvarna S.K., Layton C., Bancroft J.D. (2019). Theory and practice of histological techniques. 8th Edition. Elsevier Health Sci. Search in Google Scholar

Swelum A.A., Hashem N.M., Abdelnour S.A., Taha A.E., Ohran H., Khafaga A.F., El-Tarabily K.A., Abd El-Hack M.E. (2021). Effects of phytogenic feed additives on the reproductive performance of animals. Saudi J. Biol. Sci., 28: 5816–5822. Search in Google Scholar

Topic Popovic N., Strunjak-Perovic I., Coz-Rakovac R., Barisic J., Jadan M., Persin Berakovic A., Sauerborn Klobucar R. (2012). Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J. Appl. Ichthyol., 28: 553–564. Search in Google Scholar

Yazdani Z., Mehrgan M.S., Khayatzadeh J., Shekarabi S.P.H., Tabrizi M.H. (2023). Dietary green-synthesized curcumin-mediated zinc oxide nanoparticles promote growth performance, haemato-biochemical profile, antioxidant status, immunity, and carcass quality in Nile tilapia (Oreochromis niloticus). Aquac. Rep., 32: 101717. Search in Google Scholar

Yonar M.E., Yonar S.M., İspir Ü., Ural M.Ş. (2019). Effects of curcumin on haematological values, immunity, antioxidant status and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas salmonicida subsp. achromogenes. Fish Shellfish Immunol., 89: 83–90. Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine