À propos de cet article

Citez

Bergmeyer H.U. (1974). Methods of enzymatic analysis. New York: Academic Press. Search in Google Scholar

Bertram H.C., Petersen J.S., Andersen, H.J. (2000). Relationship between RN- genotype and drip loss in meat from Danish pigs. Meat Sci., 56: 49–55. Search in Google Scholar

Bolormaa S., Hayes B.J., van der Werf J.H.J., Pethick D., Goddard M.E., Daetwyler H.D. (2016). Detailed phenotyping identifies genes with pleiotropic effects on body composition. BMC Genomics, 17: 224. Search in Google Scholar

Choi I., Steibel J.P., Bates R.O., Raney N.E., Rumph J.M., Ernst C.W. (2011). Identification of carcass and meat quality QTL in F(2) Duroc x Pietrain pig resource population using different least-squares analysis models. Front. Genet., 2: 18. Search in Google Scholar

Coudy-Gandilhon C., Gueugneau M., Taillandier D., Combaret L., Polge C., Roche F., Barthélémy J.C., Féasson L., Maier J.A., Mazur A., Béchet, D. (2019). Magnesium transport and homeostasis-related gene expression in skeletal muscle of young and old adults: analysis of the transcriptomic data from the PROOF cohort Study. Magnes Res., 32: 72–82. Search in Google Scholar

Dalrymple R.H., Hamm R. (1973). A method for extracting of glycogen and metabolites from a single muscle sample. J. Food Technol., 8: 439–444. Search in Google Scholar

da Silva IV, Cardoso C., Méndez-Giménez L., Camoes S.P., Frühbeck G., Rodríguez A., Miranda J.P., Soveral G. (2020). Aquaporin-7 and aquaporin-12 modulate the inflammatory phenotype of endocrine pancreatic beta-cells. Arch. Biochem. Biophys., 30: 108481. Search in Google Scholar

Duan Y.Y., Ma J.W., Yuan F., Huang L.B., Yang K.X., Xie J.P., Wu G.Z., Huang L.S. (2009). Genome-wide identification of quantitative trait loci for pork temperature, pH decline, and glycolytic potential in a large-scale White Duroc x Chinese Erhualian resource population. J. Anim. Sci., 97: 9–16. Search in Google Scholar

EC (2020). EU agricultural outlook for markets, income and environment, 2020–2030. European Commission, DG Agriculture and Rural Development, Brussels, pp. 29–34, https://doi.org/10.2762/252413 Search in Google Scholar

Eisinger K., Rein-Fischboeck L., Neumeier M., Schmidhofer S., Pohl R., Haberl EM., Liebisch G., Kopp A., Schmid A., Krautbauer S., Buechler C. (2018). Alpha-syntrophin deficient mice are protected from adipocyte hypertrophy and ectopic triglyceride deposition in obesity. Exp. Mol. Pathol. 104: 212–221. Search in Google Scholar

Espinosa-Cantu A., Cruz-Bonilla E., Noda-Garcia L., DeLuna A. (2020). Multiple forms of multifunctional proteins in health and disease. Front. Cell Develop. Biol., 10: 451. Search in Google Scholar

Fontanesi L., Davoli R., Nanni Costa L., Beretti F., Scotti E., Tazzoli M., Tassone F. (2008). Investigation of candidate genes for glycolytic potential of porcine skeletal muscle: Association with meat quality and production traits in Italian Large White pigs. Meat Sci., 80: 780–787. Search in Google Scholar

Gao G., Gao N., Li S., Kuang W., Zhu L., Jiang W., Yu W., Guo J., Li Z., Yang C., Zhao Y. (2021). Genome-wide association study of meat quality traits in a three-way crossbred commercial pig population. Front. Genet. 17: 614087. Search in Google Scholar

Goddard M.E., Hayes B.J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Rev. Genet., 10: 381–391. Search in Google Scholar

Herault F., Damon M., Cherel P., Le Roy P. (2018). Combined GWAS and LDLA approaches to improve genome-wide quantitative trait loci detection affecting carcass and meat quality traits in pig. Meat Sci., 135: 148–158. Search in Google Scholar

Henchion M., McCarthy M., Resconi V.C., Troy D. (2014). Meat consumption: trends and quality matters. Meat Sci., 98: 561–568. Search in Google Scholar

Hu Z.L., Park C.A., Reecy J.M. (2019). Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res., 47: D701–D710. Search in Google Scholar

Huff‐Lonergan E., Lonergan S.M. (2005). Mechanisms of water‐holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci., 71: 194–204. Search in Google Scholar

Ilian M.A., Bickerstaffe R., Greaser M.L. (2004). Postmortem changes in myofibrillar-bound calpain 3 revealed by immunofluorescence microscopy. Meat Sci., 66: 231–240. Search in Google Scholar

Kamiński S., Wójcik E., Ruść A., Brym P. (2002). Allele frequency in Ryanodine Receptor (RYR1) locus in boars of different breeds. Ann. Anim. Sci., Suppl., 2: 33–35. Search in Google Scholar

Kocwin-Podsiadla M., Krzecio E., Przybylski W. (2006). Pork quality and methods of its evaluation – a review. Pol. J. Food Nutr. Sci., 15: 241–248. Search in Google Scholar

Krivoruchko A., Surov A., Skokova A., Kanibolotskaya A., Saprikina T., Kukharuk M., Yatsyk O. (2022). A genome-wide search for candidate genes of meat production in Jalgin merino considering known productivity genes. Genes (Basel), 13: 1337. Search in Google Scholar

Lebret B., Čandek-Potokar M. (2022). Review: Pork quality attributes from farm to fork. Part I. Carcass and fresh meat. Animal, Suppl., 1: 100402. Search in Google Scholar

Lian T., Wang L., Liu Y. (2013). A new insight into the role of calpains in post-mortem meat tenderization in domestic animals: A review. Asian-Austral. J. Anim. Sci., 26: 443–454. Search in Google Scholar

Lee L.A., Barrick S.K., Buvoli A.E., Walklate J., Stump W.T., Geeves M., Greenberg M.J., Leinwand L.A. (2023). Distinct effects of two hearing loss-associated mutations in the sarcomeric myosin MYH7b. J. Biol. Chem., 299: 104631. Search in Google Scholar

Littiere T.O., Castro G.H.F., Rodriguez M.P.R., Bonafé C.M., Magalhães A.F.B., Faleiros R.R., Vieira J.I.G., Santos C.G., Verardo L.L. (2020). Identification and functional annotation of genes related to horses’ performance: from GWAS to post-GWAS. Animals, 10: 1173. Search in Google Scholar

Liu Y., Liu X., Zheng Z., Ma T., Liu Y., Long H. (2020). Genome-wide analysis of expression QTL (eQTL) and allele-specific expression (ASE) in pig muscle identifies candidate genes for meat quality traits. Genet. Select. Evol., 52: 59. Search in Google Scholar

Martin P., Taussat S., Vinet A., Krauss D., Maupetit D., Renand G. (2019). Genetic parameters and genome-wide association study regarding feed efficiency and slaughter traits in Charolais cows. J. Anim. Sci., 97: 3684–3698. Search in Google Scholar

Meuwissen T.H., Hayes B.J., Goddard M.E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157: 1819–1829. Search in Google Scholar

Monin G., Sellier P. (1985). Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: The case of the Hampshire breed. Meat Sci., 13: 49–63. Search in Google Scholar

OECD/FAO (2021). OECD-FAO Agricultural Outlook 2021–2030, OECD Publishing, Paris, pp. 163–177, https://doi.org/10.1787/19428846-en Search in Google Scholar

Piórkowska K., Żukowski K., Szmatoła T., Ropka-Molik K., Tyra M. (2017). Transcripts variants of a region on SSC15 rich in QTLs associated with meat quality in pigs. Ann. Anim. Sci., 17: 703–715. Search in Google Scholar

Prange H., Jugert L., Schamer E. (1977). Untersuchungen zur Muskel fleischqualitat beim Schwein. Arch. Exper. Vet. Med. Leipzig, 31: 235–248. Search in Google Scholar

Ramos A.M., Crooijmans R.P., Affara N.A., Amaral A.J., Archibald A.L., Beever J.E., Bendixen C., Churcher C., Clark R., Dehais P., Hansen M.S., Hedegaard J., Hu Z.L., Kerstens H.H., Law A.S., Megens H.J., Milan D., Nonneman D.J., Rohrer G.A., Rothschild M.F., Smith T.P., Schnabel R.D., Van Tassell C.P., Taylor J.F., Wiedmann R.T., Schook L.B., Search in Google Scholar

Groenen M.A. (2009). Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One, 4:e6524. Search in Google Scholar

Scheffler T.L., Gerrard D.E. (2007). Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Sci., 77: 7–16. Search in Google Scholar

Segura V., Vilhjálmsson B.J., Platt A., Korte A., Seren U., Long Q., Nordborg M. (2012). An efficient multi-locus mixed model approach for genome-wide association studies in structured populations. Nature Genet., 44: 825–830. Search in Google Scholar

Shi J., Wang X., Song Y., Liu T., Cheng S., Zhang Q. (2021). excavation of genes related to the mining of growth, development, and meat quality of two crossbred sheep populations based on comparative transcriptomes. Animals (Basel), 11: 1492. Search in Google Scholar

Tizioto P.C., Decker J.E., Taylor J.F., Schnabel R.D., Mudadu M.A., Silva F..L, Mourão G.B., Coutinho L.L., Tholon P., Sonstegard T.S., Rosa A.N., Alencar M.M., Tullio R.R., Medeiros S.R., Nassu R.T., Feijó G.L., Silva L.O., Torres R.A., Siqueira F., Higa R.H., Regitano L.C. (2013). Genome scan for meat quality traits in Nelore beef cattle. Physiol. Genomics, 45: 1012–1020. Search in Google Scholar

Troy D.J., Kerry J.P. (2010). Consumer perception and the role of science in the meat industry. Meat Sci., 86: 214–226. Search in Google Scholar

van Wijk H.J., Dibbits B., Baron E.E., Brings A.D., Harlizius B., Groenen M.A.M., Knol, E.F., Bovenhuis H. (2006). Identification of quantitative trait loci for carcass composition and pork quality traits in a commercial finishing cross. J. Anim. Sci., 84: 789–799. Search in Google Scholar

Wang L., Sorensen P., Janss L., Ostersen T., Edwards D. (2013). Genome-wide and local pattern of linkage disequilibrium and persistence of phase for 3 Danish pig breeds. BMC Genetics, 5: 115. Search in Google Scholar

Wang H., Wang X., Li M., Sun H., Chen Q., Yan D., Dong X., Pan Y., Lu S. (2023).Genome-wide association study reveals genetic loci and candidate genes for meat quality traits in a four-way crossbred pig population. Front Genet., 6: 1001352. Search in Google Scholar

Warr A., Affara N., Aken B., Beiki H., Bickhart D.M., Billis K., Chow W., Eory L., Finlayson H.A., Flicek P., Girón C.G., Griffin D.K., Hall R., Hannum G., Hourlier T., Howe K., Hume D.A., Izuogu O., Kim K., Koren S., Liu H., Manchanda N., Martin F.J., Nonneman D.J., O’Connor R.E., Phillippy A.M., Rohrer G.A., Rosen B.D., Rund L.A., Sargent C.A., Schook L.B., Schroeder S.G., Schwartz A.S., Skinner B.M., Talbot R., Tseng E., Tuggle C.K., Watson M., Smith T.P.L., Archibald, A.L. (2020). An improved pig reference genome sequence to enable pig genetics and genomics research. Gigascience, 9(6): giaa051. Search in Google Scholar

Xie X., Huang C., Huang Y., Zou X., Zhou R., Ai H., Huang L., Ma J. 2023. Genetic architecture for skeletal muscle glycolytic potential in Chinese Erhualian pigs revealed by a genome-wide association study using 1.4M SNP array. Front Genet., 14: 1141411. Search in Google Scholar

Yang X.Q., Liu D., Yu H., Guo L.J., Liu H. (2008). Cloning, expression, and polymorphism of the porcine calpain 10 gene. Acta Biochim. Biophys. Sinica, 40: 356–363. Search in Google Scholar

Zhang C., Wang Z., Bruce H., Kemp R.A., Charagu P., Miar Y., Yang T., Plastow G. (2015). Genome-wide association studied (GWAS) identify a QTL close to PRKAG3 affecting meat pH and colour in crossbred commercial pigs. BMC Genomics, 16: 33. Search in Google Scholar

Zhong W., Liu W., Chen J., Sun Q., Hu M., Li Y. (2022). Understanding the function of regulatory DNA interactions in the interpretation of non-coding GWAS variants. Front. Cell Develop. Biol., 10: 957292. Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine