Accès libre

Effect of dietary fish oil sparing with blended vegetable oils on growth, fatty acid composition and lipid-metabolism-related genes expression in juvenile rainbow trout (Oncorhynchus mykiss)

À propos de cet article

Citez

Abbaszadeh A., Yavari V., Hoseini S. J., Nafisi M., Torfi Mozanzadeh M. (2019). Effects of different carbon sources and dietary protein levels in a biofloc system on growth performance, immune response against white spot syndrome virus infection and cathepsin L gene expression of Litopenaeus vannamei. Aquac. Res., 50: 1162–1176. Search in Google Scholar

Agh N., Jasour M.S., Noori F. (2014). Potential development of value-added fishery products in underutilized and commercial fish species: comparative study of lipid quality indicators. J. Am. Oil Chem. Soc., 91: 1171–1177. Search in Google Scholar

Agh N., Jafari F., Jalili R., Noori F., Mozanzadeh M.T. (2019). Replacing dietary fish oil with vegetable oil blends in female rainbow trout brood stock does not affect breeding quality. Lipids, 54: 149–161. Search in Google Scholar

Agh N., Torfi Mozanzadeh M., Jafari F., Noori F., Jalili R. (2020). The influence of dietary fish oil replacement with mixture of vegetable oils on reproductive performance, immune responses and dynamic of fatty acids during embryogenesis in Oncorhynchus mykiss. Aquac. Res., 51: 918–931. Search in Google Scholar

Aksakal E., Vural O., Tunç A., Kamaszewski M., Ekinci D. (2023). Effects of dietary replacement of fish oil with different lipid sources on growth, fatty acid composition, mineral content and expression levels desaturase and elongase genes in rainbow trout (Oncorhynchus mykiss). Aquac. Rep., 29: 101519. Search in Google Scholar

Alhazzaa R., Nichols P.D., Carter C.G. (2019). Sustainable alternatives to dietary fish oil in tropical fish aquaculture. Rev. Aquac., 11: 1195–1218. Search in Google Scholar

Alvarez M., Diez A., Lopez-Bote C., Gallego M., Bautista J. (2000). Short-term modulation of lipogenesis by macronutrients in rainbow trout (Oncorhynchus mykiss) hepatocytes. British J. Nutr., 84: 619–628. Search in Google Scholar

AOAC (2005). Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International 18th ed, Gaithersburg, Maryland, USA, 45: 75–76. Search in Google Scholar

Bell M., Dick J., Porter A. (2001). Biosynthesis and tissue deposition of docosahexaenoic acid (22: 6n−3) in rainbow trout (Oncorhynchus mykiss). Lipids, 36: 1153–1159. Search in Google Scholar

Betancor M.B., Howarth F.J., Glencross B.D., Tocher D.R. (2014). Influence of dietary docosahexaenoic acid in combination with other long-chain polyunsaturated fatty acids on expression of biosynthesis genes and phospholipid fatty acid compositions in tissues of post-smolt Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol., 172: 74–89. Search in Google Scholar

Buege J.A., Aust S.D. (1978). Microsomal lipid peroxidation. Methods in Enzymology. Elsevier. Caballero M., Obach A., Rosenlund G., Montero D., Gisvold M., Izquierdo M. (2002). Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture, 214: 253–271. Search in Google Scholar

Chen Q.L., Luo Z., Huang C., Zheng J.L., Pan Y.X., Song Y.F., Hu W. (2015). Molecular cloning and tissue mRNA levels of 15 genes involved in lipid metabolism in Synechogobius hasta. Europ. J. Lipid Sci. Technol., 117: 471–482. Search in Google Scholar

Clarke S.D. (1993). Regulation of fatty acid synthase gene expression: an approach for reducing fat accumulation. J. Anim. Sci., 71: 1957–1965. Search in Google Scholar

Codabaccus M.B., Ng W.-K., Nichols P.D., Carter C.G. (2013). Restoration of EPA and DHA in rainbow trout (Oncorhynchus mykiss) using a finishing fish oil diet at two different water temperatures. Food Chem., 141: 236–244. Search in Google Scholar

Cui K., Li X., Chen Q., Li Q., Gao S., Tan P., Mai K., Ai Q. (2020). Effect of replacement of dietary fish oil with four vegetable oils on prostaglandin E2 synthetic pathway and expression of inflammatory genes in marine fish Larimichthys crocea. Fish Shellfish Immunol., 107: 529–536. Search in Google Scholar

Dernekbasi S., Akyüz A.P., Karayücel İ. (2021). Effects of total replacement of dietary fish oil by vegetable oils on growth performance, nutritional quality and fatty acid profiles of rainbow trout (Oncorhynchus mykiss) at optimum and high temperature conditions. Ege J. Fish. Aquat. Sci., 38: 237–246. Search in Google Scholar

Di Pietro S.M., Santomé J.A. (2001). Structural and biochemical characterization of the lungfish (Lepidosiren paradoxa) liver basic fatty acid binding protein. Archiv. Biochem. Biophys., 388: 81–90. Search in Google Scholar

FAO (2022). Fisheries and Aquaculture Statistics (Online). FAO. Available: https://www.fao.org/fishery/en/statistics [Accessed]. Search in Google Scholar

Folch J., Lees M., Sloane Stanley G.H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497–509. Search in Google Scholar

Fonseca-Madrigal J., Karalazos V., Campbell P., Bell J.G., Tocher D.R. (2005). Influence of dietary palm oil on growth, tissue fatty acid compositions, and fatty acid metabolism in liver and intestine in rainbow trout (Oncorhynchus mykiss). Aquacult. Nutr., 11: 241–250. Search in Google Scholar

Gilman C.I., Leusch F.D., Breckenridge W.C., MacLatchy D.L. (2003). Effects of a phytosterol mixture on male fish plasma lipoprotein fractions and testis P450scc activity. Gen. Comp. Endocrinol., 130: 172–184. Search in Google Scholar

Goth L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta, 196: 143–151. Search in Google Scholar

Guler M., Yildiz M. (2011). Effects of dietary fish oil replacement by cottonseed oil on growth performance and fatty acid composition of rainbow trout (Oncorhynchus mykiss). Turk. J. Vet. Anim. Sci., 35: 157–167. Search in Google Scholar

Hekmatpour F., Mozanzadeh M.T. (2021). Legumes, Sustainable alternative protein sources for aquafeeds. Legumes Research – Volume 2. IntechOpen. Search in Google Scholar

Hong J., Bledsoe J.W., Overturf K.E., Lee S., Iassonova D., Small B.C. (2022). LatitudeTM oil as a sustainable alternative to dietary fish oil in rainbow trout (Oncorhynchus mykiss): effects on filet fatty acid profiles, intestinal histology, and plasma biochemistry. Front. Sust. Food Syst., 6: 837628. Search in Google Scholar

Hussain M.M., Rava P., Pan X., Dai K., Dougan S.K., Iqbal J., Lazare F., Khatun I. (2008). Microsomal triglyceride transfer protein in plasma and cellular lipid metabolism. Curr. Opin. Lipidol., 19: 277–284. Search in Google Scholar

Jin M., Yuan Y., Lu Y., Ma H., Sun P., Li Y., Qiu H., Ding L., Zhou Q. (2017). Regulation of growth, tissue fatty acid composition, biochemical parameters and lipid related genes expression by different dietary lipid sources in juvenile black seabream, Acanthopagrus schlegelii. Aquaculture, 479: 25–37. Search in Google Scholar

Kenari A.A., Mozanzadeh M.T., Pourgholam R. (2011). Effects of total fish oil replacement to vegetable oils at two dietary lipid levels on the growth, body composition, haemato-immunological and serum biochemical parameters in Caspian brown trout (Salmo trutta caspius Kessler, 1877). Aquacult. Res., 42: 1131–1144. Search in Google Scholar

Kutluyer F., Sirkecioğlu A.N., Aksakal E., Aksakal F.İ., Tunç A., Günaydin E. (2017). Effect of dietary fish oil replacement with plant oils on growth performance and gene expression in juvenile rainbow trout. Ann. Anim. Sci., 17: 1135–1153. Search in Google Scholar

Lazzarotto V., Médale F., Larroquet L., Corraze G. (2018). Long-term dietary replacement of fishmeal and fish oil in diets for rainbow trout (Oncorhynchus mykiss): Effects on growth, whole body fatty acids and intestinal and hepatic gene expression. PLoS One, 13: e0190730. Search in Google Scholar

Le Boucher R., Quillet E., Vandeputte M., Lecalvez J.M., Goardon L., Chatain B., Médale F., Dupont-Nivet M. (2011). Plant-based diet in rainbow trout (Oncorhynchus mykiss Walbaum): Are there genotype-diet interactions for main production traits when fish are fed marine vs. plant-based diets from the first meal? Aquaculture, 321: 41–48. Search in Google Scholar

Li F. J., Lin X., Lin S. M., Chen W.Y., Guan Y. (2016). Effects of dietary fish oil substitution with linseed oil on growth, muscle fatty acid and metabolism of tilapia (Oreochromis niloticus). Aquacult. Nutr., 22: 499–508. Search in Google Scholar

Li X., Chen Q., Li Q., Li J., Cui K., Zhang Y., Kong A., Zhang Y., Wan M., Mai K. (2021). Effects of high levels of dietary linseed oil on the growth performance, antioxidant capacity, hepatic lipid metabolism, and expression of inflammatory genes in large yellow croaker (Larimichthys crocea). Front. Physiol., 12: 41. Search in Google Scholar

Liland N.S., Espe M., Rosenlund G., Waagbø R., Hjelle J.I., Lie Ø., Fontanillas R., Torstensen B.E. (2013). High levels of dietary phytosterols affect lipid metabolism and increase liver and plasma TAG in Atlantic salmon (Salmo salar L.). Briti. J. Nutr., 110: 1958–1967. Search in Google Scholar

Lin Y.-H., Shiau S.-Y. (2003). Dietary lipid requirement of grouper, Epinephelus malabaricus, and effects on immune responses. Aquaculture, 225: 243–250. Search in Google Scholar

Liu K., Liu H., Chi S., Dong X., Yang Q., Tan B. (2018). Effects of different dietary lipid sources on growth performance, body composition and lipid metabolism-related enzymes and genes of juvenile golden pompano, Trachinotus ovatus. Aquacult. Res., 49: 717–725. Search in Google Scholar

Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25: 402–408. Search in Google Scholar

Locket P.L., Gallaher D.D. (1989). An improved procedure for bile acid extraction and purification and tissue distribution in the rat. Lipids, 24: 221–223. Search in Google Scholar

Madsen L., Rustan A.C., Vaagenes H., Berge K., Dyrøy E., Berge R.K. (1999). Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference. Lipids, 34: 951–963. Search in Google Scholar

Masiha A., Mahboobi Soofiani N., Ebrahimi E., Kadivar M., Karimi M.R. (2013). Effect of dietary flaxseed oil level on the growth performance and fatty acid composition of fingerlings of rainbow trout, Oncorhynchus mykiss. SpringerPlus, 2: 1–7. Search in Google Scholar

McCord J.M., Fridovich I. (1969). Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6049–6055. Search in Google Scholar

Menoyo D., Izquierdo M., Robaina L., Ginés R., Lopez-Bote C., Bautista J.M. (2004). Adaptation of lipid metabolism, tissue composition and flesh quality in gilthead sea bream (Sparus aurata) to the replacement of dietary fish oil by linseed and soyabean oils. Brit. J. Nutr., 92: 41–52. Search in Google Scholar

Mohseni M., Najjar Lashgari S., Golalipour Y., Esmaeil Rastravan M., Banavreh A., Sajadkhanian A., Pourhosein-Sarameh S. (2022). Effects of different dietary canola and fish oil levels on overall performance, fatty acid profile, haemato-biochemical responses, and digestibility of macronutrients of Caspian brown trout (Salmo trutta caspius Kessler) fingerling. J. Appl. Ichthyol., 38: 212–222. Search in Google Scholar

Monge-Ortiz R., Tomás-Vidal A., Rodriguez-Barreto D., Martínez-Llorens S., Pérez J., Jover-Cerdá M., Lorenzo A. (2018). Replacement of fish oil with vegetable oil blends in feeds for greater amberjack (Seriola dumerili) juveniles: Effect on growth performance, feed efficiency, tissue fatty acid composition and flesh nutritional value. Aquacult. Nutr., 24: 605–615. Search in Google Scholar

Monroig Ó., Kabeya N. (2018). Desaturases and elongases involved in polyunsaturated fatty acid biosynthesis in aquatic invertebrates: a comprehensive review. Fish. Sci., 84: 911–928. Search in Google Scholar

Montero D., Benitez-Dorta V., Caballero M.J., Ponce M., Torrecillas S., Izquierdo M., Zamorano M.J., Manchado M. (2015). Dietary vegetable oils: effects on the expression of immune-related genes in Senegalese sole (Solea senegalensis) intestine. Fish Shellfish Immunol., 44: 100–108. Search in Google Scholar

Morais S., Pratoomyot J., Taggart J.B., Bron J.E., Guy D.R., Bell J.G., Tocher D.R. (2011 a). Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis. BMC Genomics, 12: 1–17. Search in Google Scholar

Morais S., Pratoomyot J., Torstensen B.E., Taggart J.B., Guy D.R., Bell J.G., Tocher D.R. (2011 b). Diet × genotype interactions in hepatic cholesterol and lipoprotein metabolism in Atlantic salmon (Salmo salar) in response to replacement of dietary fish oil with vegetable oil. Brit. J. Nutr., 106: 1457–1469. Search in Google Scholar

Morais S., Silva T., Cordeiro O., Rodrigues P., Guy D.R., Bron J.E., Taggart J.B., Bell J.G., Tocher D.R. (2012). Effects of genotype and dietary fish oil replacement with vegetable oil on the intestinal transcriptome and proteome of Atlantic salmon (Salmo salar). BMC Genomics, 13: 1–21. Search in Google Scholar

Mourente G., Tocher D.R., Diaz E., Grau A., Pastor E. (1999). Relationships between antioxidants, antioxidant enzyme activities and lipid peroxidation products during early development in Dentex dentex eggs and larvae. Aquaculture, 179: 309–324. Search in Google Scholar

Mourente G., Good J.E., Thompson K.D., Bell J.G. (2007). Effects of partial substitution of dietary fish oil with blends of vegetable oils, on blood leucocyte fatty acid compositions, immune function and histology in European sea bass (Dicentrarchus labrax L.). Brit. J. Nutr., 98: 770–779. Search in Google Scholar

Mozanzadeh M.T., Hekmatpour F., Gisbert E. (2021). Fish oil sparing and alternative lipid sources in aquafeeds. Sustainable Aquafeeds. CRC Press. Mu H., Shen H., Liu J., Xie F., Zhang W., Mai K. (2018). High level of dietary soybean oil depresses the growth and anti-oxidative capacity and induces inflammatory response in large yellow croaker Larimichthys crocea. Fish Shellfish Immunol., 77: 465–473. Search in Google Scholar

Mu H., Wei C., Zhang Y., Zhou H., Pan Y., Chen J., Zhang W., Mai K. (2020). Impacts of replacement of dietary fish oil by vegetable oils on growth performance, anti-oxidative capacity, and inflammatory response in large yellow croaker Larimichthys crocea. Fish Physiol. Biochem., 46: 231–245. Search in Google Scholar

Noguchi T., Cantor A.H., Scott M.L. (1973). Mode of action of selenium and vitamin E in prevention of exudative diathesis in chicks. J. Nutr., 103: 1502–1511. Search in Google Scholar

Noori F., Agh N., Jafari F., Jalili R., Gisbert E., Torfi Mozanzadeh M. (2019). Dietary fatty acid profiling in plant protein-rich diets affects the reproductive performance, egg fatty acid profile and haematological parameters in female rainbow trout (Oncorhynchus mykiss). Aquacult. Nutr., 25: 1050–1062. Search in Google Scholar

NRC (2011). Nutrient Requirements of Fish and Shrimp, USA, National Academies Press. Ofori-Mensah S., Yıldız M., Arslan M., Eldem V. (2020). Fish oil replacement with different vegetable oils in gilthead seabream, Sparus aurata diets: Effects on fatty acid metabolism based on whole-body fatty acid balance method and genes expression. Aquaculture, 529: 735609. Search in Google Scholar

Oppedisano F., Macrì R., Gliozzi M., Musolino V., Carresi C., Maiuolo J., Bosco F., Nucera S., Caterina Zito M., Guarnieri L. (2020). The anti-inflammatory and antioxidant properties of n-3 PUFAs: Their role in cardiovascular protection. Biomedicines, 8: 306. Search in Google Scholar

Panserat S., Kolditz C., Richard N., Plagnes-Juan E., Piumi F., Esquerré D., Médale F., Corraze G., Kaushik S. (2008). Hepatic gene expression profiles in juvenile rainbow trout (Oncorhynchus mykiss) fed fishmeal or fish oil-free diets. Brit. J. Nutr., 100: 953–967. Search in Google Scholar

Panserat S., Hortopan G., Plagnes-Juan E., Kolditz C., Lansard M., Skiba-Cassy S., Esquerre D., Geurden I., Médale F., Kaushik S. (2009). Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver. Aquaculture, 294: 123–131. Search in Google Scholar

Peng M., Xu W., Mai K., Zhou H., Zhang Y., Liufu Z., Zhang K., Ai Q. (2014). Growth performance, lipid deposition and hepatic lipid metabolism related gene expression in juvenile turbot (Scophthalmus maximus L.) fed diets with various fish oil substitution levels by soybean oil. Aquaculture, 433: 442–449. Search in Google Scholar

Peng S., Chen L., Qin J.G., Hou J., Yu N., Long Z., Ye J., Sun X. (2008). Effects of replacement of dietary fish oil by soybean oil on growth performance and liver biochemical composition in juvenile black seabream, Acanthopagrus schlegeli. Aquaculture, 276: 154–161. Search in Google Scholar

Peng X., Li F., Lin S., Chen Y. (2016). Effects of total replacement of fish oil on growth performance, lipid metabolism and antioxidant capacity in tilapia (Oreochromis niloticus). Aquacult. Int., 24: 145–156. Search in Google Scholar

Pickova J., Mørkøre T. (2007). Alternate oils in fish feeds. Europ. J. Lipid Sci. Technol., 109: 256–263. Search in Google Scholar

Qiu H., Jin M., Li Y., Lu Y., Hou Y., Zhou Q. (2017). Dietary lipid sources influence fatty acid composition in tissue of large yellow croaker (Larmichthys crocea) by regulating triacylglycerol synthesis and catabolism at the transcriptional level. PLoS One, 12: e0169985. Search in Google Scholar

Reis İ.K., Yıldız M., Çakiris A. (2022). Effects of different vegetable oils on the fatty acid metabolism based on whole body fatty acid balance method and gene expression of rainbow trout (Oncorhynchus mykiss). Turk. J. Fish. Aquat. Sci., 23. Search in Google Scholar

Richard N., Kaushik S., Larroquet L., Panserat S., Corraze G. (2006). Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). Brit. J. Nutr, 96: 299–309. Search in Google Scholar

Rinchard J., Czesny S., Dabrowski K. (2007). Influence of lipid class and fatty acid deficiency on survival, growth, and fatty acid composition in rainbow trout juveniles. Aquaculture, 264: 363–371. Search in Google Scholar

Rozas-Serri M., Correa R., Walker-Vergara R., Coñuecar D., Barrientos S., Leiva C., Ildefonso R., Senn C., Peña A. (2022). Reference intervals for blood biomarkers in farmed Atlantic salmon, coho salmon and rainbow trout in Chile: promoting a preventive approach in aquamedicine. Biology, 11: 1066. Search in Google Scholar

Sáez-Royuela M., García T., Carral J.M., Celada J.D. (2022). Fish oil replacement by a blend of vegetable oils in diets for juvenile tench (Tinca tinca Linnaeus, 1758): Effects on growth performance and whole-body composition. Animals, 12: 1113. Search in Google Scholar

Sales J., Glencross B. (2011). A meta-analysis of the effects of dietary marine oil replacement with vegetable oils on growth, feed conversion and muscle fatty acid composition of fish species. Aquac. Nutr., 17: 271–287. Search in Google Scholar

Shahrooz R., Agh N., Jafari N., Kalantari A., Jalili R., Karimi A. (2018). Effects of fish oil replacement with vegetable oils in rainbow trout (Oncorhynchus mykiss) fingerlings diet on growth performance and foregut histology. Turk. J. Fish. Aquat. Sci., 18: 825–832. Search in Google Scholar

Siwicki A.K., Anderson D.P., Rumsey G.L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol., 41: 125–139. Search in Google Scholar

Stolen J.S., Fletcher T.C., Anderson D.P., Roberson B.S., van Muiswinkel W.B. (1990). Techniq. Fish Immunol., Fair Haven, NJ, SOS Publications. Search in Google Scholar

Thanuthong T., Francis D.S., Manickam E., Senadheera S.D., Cameron-Smith D., Turchini G.M. (2011 a). Fish oil replacement in rainbow trout diets and total dietary PUFA content: II) Effects on fatty acid metabolism and in vivo fatty acid bioconversion. Aquaculture, 322: 99–108. Search in Google Scholar

Thanuthong T., Francis D.S., Senadheera S.D., Jones P.L., Turchini G.M. (2011 b). Fish oil replacement in rainbow trout diets and total dietary PUFA content: I) Effects on feed efficiency, fat deposition and the efficiency of a finishing strategy. Aquaculture, 320: 82–90. Search in Google Scholar

Tocher D.R. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci., 11: 107–184. Search in Google Scholar

Torstensen B.E., Tocher D.R. (2010). The effects of fish oil replacement on lipid metabolism of fish. In: Fish oil replacement and alternative lipid sources in aquaculture feeds. Taylor & Francis Group, pp. 405–437. Search in Google Scholar

Tort L., Gómez E., Montero D., Sunyer J.O. (1996). Serum haemolytic and agglutinating activity as indicators of fish immunocompetence: their suitability in stress and dietary studies. Aquacult. Int., 4: 31–41. Search in Google Scholar

Turchini G.M., Francis D.S. (2009). Fatty acid metabolism (desaturation, elongation and β-oxidation) in rainbow trout fed fish oil- or linseed oil-based diets. Brit. J. Nutr., 102: 69–81. Search in Google Scholar

Turchini G.M., Torstensen B.E., Ng W.K. (2009). Fish oil replacement in finfish nutrition. Rev. Aquac., 1: 10–57. Search in Google Scholar

Turchini G.M., Francis D.S., Du Z.-Y., Olsen R.E., Ringø E., Tocher D.R. (2022). The Lipids. In: Fish Nutrition, Hardy R.W., Kaushik S.J. (eds). New York: Elsevier. Search in Google Scholar

Wabike E.E., Wu X., Zhu W., Lou B., Chen R., Xu D., Wang L., Zhou S., Tan P. (2020). Partial replacement of fish oil with terrestrial lipid blend and effects on growth performance, body composition, immune parameter and growth-related genes in yellow drum (Nibea albiflora). Aquacult. Nutr., 26: 954–963. Search in Google Scholar

Wang Q., He G., Mai K. (2016). Modulation of lipid metabolism, immune parameters, and hepatic transferrin expression in juvenile turbot (Scophthalmus maximus L.) by increasing dietary linseed oil levels. Aquaculture, 464: 489–496. Search in Google Scholar

Weickert M.O., Loeffelholz C.V., Roden M., Chandramouli V., Brehm A., Nowotny P., Osterhoff M.A., Isken F., Spranger J., Landau B.R. (2007). A Thr94Ala mutation in human liver fatty acid-binding protein contributes to reduced hepatic glycogenolysis and blunted elevation of plasma glucose levels in lipid-exposed subjects. Am. J. Physiol. Endocrinol. Metab., 293: 1078–E1084. Search in Google Scholar

Yan J., Liao K., Wang T., Mai K., Xu W., Ai Q. (2015). Dietary lipid levels influence lipid deposition in the liver of large yellow croaker (Larimichthys crocea) by regulating lipoprotein receptors, fatty acid uptake and triacylglycerol synthesis and catabolism at the transcriptional level. PloS One, 10: e0129937. Search in Google Scholar

Yildiz M., Köse İ., Issa G., Kahraman T. (2015). Effect of different plant oils on growth performance, fatty acid composition and flesh quality of rainbow trout (Oncorhynchus mykiss). Aquacult. Res., 46: 2885–2896. Search in Google Scholar

Yıldız M., Eroldoğan T.O., Ofori-Mensah S., Engin K., Baltacı M.A. (2018). The effects of fish oil replacement by vegetable oils on growth performance and fatty acid profile of rainbow trout: Refeeding with fish oil finishing diet improved the fatty acid composition. Aquaculture, 488: 123–133. Search in Google Scholar

Yu H., Li L., Yu L., Zhang L., Li F., Guo M., Zhang J., Hou J., Zhang Y. (2023). Effect of supplemental dietary α-linolenic acid (18:3n-3) on the growth performance, body composition, and fatty acid profile of coho salmon (Oncorhynchus kisutch) alevins cultured in freshwater. Aquacult. Res., https://doi.org/10.1155/2023/4869006. Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine