Accès libre

Poultry farming does not play a significant role in global warming

   | 12 juil. 2023
À propos de cet article

Citez

Ayalew H., Zhang H., Wang J., Wu S., Qiu K., Qi G., Tekeste A., Wassie T., Chanie D. (2022) Potential feed additives as antibiotic alternatives in broiler production. Front. Vet. Sci., 9: 916473 Search in Google Scholar

Aviagen (2019). Ross Broiler Nutrition Specifications Aviagen Group, Aviagen, Huntsville, AL. Search in Google Scholar

Bessei W. (2011). Probleme bei der Umstellung der Legehennenhaltung von konventioneller Käfighaltung auf alternative Systeme. 10. Nemzetközi Baromfitenyésztési Konferencia, Kaposvár, pp. 31–40. Search in Google Scholar

Cambra-López M., Marín-García P.J., Lledó C., Cerisuelo A., Pascual J.J. (2022). Biomarkers and de novo protein design can improve precise amino acid nutrition in broilers. Animals, 12: 935. Search in Google Scholar

Carsguide. Retrieved from https://www.carsguide.com.au/car-advice/how-many-cars-are-there-in-the-world-70629. Accessed: 14.11.2022. Search in Google Scholar

Chen C., Su Z., Li Y., Laun P., Wang S., Zhang H., Xiao F., Gou H., Cao Z., Li H., Leng L. (2021). Estimation of the genetic parameters of traits relevant to feed efficiency: result from broiler lines divergent for high or low abdominal fat content. Poultry Sci., 100: 461–466. Search in Google Scholar

Cheng H.-W. (2010). Breeding of tomorrow’s chickens to improve well-being. Poultry Sci., 89: 805–813. Search in Google Scholar

Cosgrove W.J., Rijsberman F.R. (2000). Challenge for the 21st century: Making water everybody’s business. Sustain. Dev. Int., 2: 149–156. Search in Google Scholar

da Silva V.P., van der Werf H.M.G., Soares S.R., Corson M.S. (2014). Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. J. Environ. Manage., 133: 122–131. Search in Google Scholar

Das R., Mishra P., Jha R. (2021). In ovo feeding as a tool for improving performance and gut health of poultry: A review. Front. Vet. Sci., 8: 754246. Search in Google Scholar

Davies R., Wales A. (2019). Antimicrobial resistance on farms: A review including biosecurity and the potential role of disinfectants in resistance selection. Compr. Rev. Food Sci. Food Saf., 18: 753–74. Search in Google Scholar

da Rosa G.I., Broetto L.F., Demczuk T., Viancelli A., Michelon W. (2022). Water footprint and productivity in broilers and swine production in Brazil from 2008 to 2018. Environ. Sci. Pollut. Res., 29: 73020–73028. Search in Google Scholar

de Vries M., de Boer I.J.M. (2010). Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci., 128: 1–11. Search in Google Scholar

Dublin Declaration (2022). https://www.dublin-declaration.org/ It was published in 2023 in a Special Issue of Animal Frontiers “The Dublin Declaration of scientists on the societal role of livestock.” Anim. Front., 13, 10. Search in Google Scholar

EASAC (2022). Regenerative agriculture in Europe. EASAC policy report 44. Search in Google Scholar

Eastwood C.R., Edwards J.P., Turner J.A. (2021). Anticipating alternative trajectories for responsible Agriculture 4.0 innovation in livestock systems. Animal, 15: 100296. Search in Google Scholar

EC (2021). Agriculture and rural development. https://agriculture.ec.europa.eu/farming/organic-farming/organic-action-plan_en Search in Google Scholar

EPA – https://www.epa.gov/climate-indicators/climate-change-indicators-global-greenhouse-gas-emissions – Accessed 27.11.2022 Accessed 07. 11. 2022. Search in Google Scholar

Falkenmark M., Rockström J. (2006). The new blue and green water paradigm: Breaking new ground for water resources planning and management. J. Water Resour. Plan. Manag., 132: 129–132. Search in Google Scholar

FAO – https://www.fao.org/aquastat/en/overview/methodology/water-use. Accessed: 14.11.2022. Search in Google Scholar

FAO (2017 a). Global Livestock Environmental Assessment Model (GLEAM). https://www.fao.org/gleam/dashboard-old/en/ Search in Google Scholar

FAO (2017 b). Water for Sustainable Food and Agriculture. Food and Agriculture Organization of the United Nations, Rome. Search in Google Scholar

Federal Aviation Administration – https://www.faa.gov/air_traffic/by_the_numbers. Accessed: 07.11.2022. Search in Google Scholar

Fulton J.E. (2012). Genomic selection for poultry breeding. Anim. Front., 2: 30–36. Search in Google Scholar

Gautron J., Réhault-Godbert S., Van de Braak T.G.H., Dunn I.C. (2021). What are the challenges facing the table egg industry in the next decades and what can be done to address them? Animal, 15: 100282. Search in Google Scholar

George D.R., Finn R.D., Graham K.M., Mul M., Maurer V., Valiente Moro C., Sparagano O.A. (2015). Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary medical science. Parasit Vectors., 8: 178. Search in Google Scholar

Giannenas I., Bonos E., Anestis V., Filioussis G., Papanastasiou D.K., Bartzanas T., Papaioannou N., Tzora A., Skoufos I. (2017). Effects of protease addition and replacement of soybean meal by corn gluten meal on the growth of broilers and on the environmental performances of a broiler production system in Greece. PLoS One, 12: e0169511. Search in Google Scholar

Havenstein G.B., Ferket P.R., Scheideler S.E., Larson B.T. (1994 a). Growth, liability, and feed conversion of 1957 vs 1991 broilers when fed "typical" 1957 and 1991 broiler diets. Poultry Sci., 73: 1785–1794. Search in Google Scholar

Havenstein G., Ferket P., Scheideler S., Rives D. (1994 b) Carcass composition and yield of 1991 vs 1957 broilers when fed “typical” 1957 and 1991 broiler diets. Poultry Sci., 73: 1795–1804. Search in Google Scholar

Havenstein G.B., Ferket P.R., Qureshi M.A. (2003 a). Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Sci., 82: 1500–1508. Search in Google Scholar

Havenstein G.B., Ferket P.R., Qureshi M.A. (2003 b). Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Sci., 82: 1509–1518. Search in Google Scholar

Heinke J., Lannerstad M., Gerten D., Havlík P., Herrero M., Notenbaert A.M.O., Hoff H., Müller C. (2020). Water use in global livestock production – Opportunities and constraints for increasing water productivity. Water Resour. Res., 56: e2019WR026995. Search in Google Scholar

Herendy V., Sütő Z., Horn P. (2004). Comparison of turkey strains and feeding management of the 1967’s and the 1999’s regarding growth and slaughter characteristics. World’s Poultry Congress, Istambul, Turkey, CD, 1449. Search in Google Scholar

Herrero M., Thornton P.K., Notenbaert A.M., Wood S., Msangi S., Freeman H.A., Bossio D., Dixon J., Peters M., van de Steeg J., Lynam J., Rao P.P., Macmillan S., Gerard B., McDermott J., Sere C., Rosegrant M. (2010). Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science, 327: 822–825. Search in Google Scholar

Hilliar M., Hargreave G., Girish C.K., Barekatain R., Wu S.-B., Swick R.A. (2020). Using crystalline amino acids to supplement broiler chicken requirements in reduced protein diets. Poultry Sci., 99: 1551–1563. Search in Google Scholar

Horn P. (2012). Some questions related to the reasonable utilization of the Earth's natural nutrient sources (in Hungarian). Magyar Tudomány, 8: 931–943. Search in Google Scholar

Horn P. (2018). Some important issues determining the future of agricultural production (in Hungarian). Gazdálkodás, 62: 385–405. Search in Google Scholar

Kleyn F.J., Ciacciariello M. (2021). Future demands of the poultry industry: will we meet our commitments sustainability in developed and developing economies? World’s Poult. Sci. J., 77: 267–278. Search in Google Scholar

Konarzewski M., Gavin A., McDevitt R., Wallis I.R. (2000). Metabolic and organ mass responses to selection for high growth rates in the domestic chicken (Gallus domesticus). Physiol. Biochem. Zool., 73: 237–248. Search in Google Scholar

Kranis A., Gheyas A.A., Boschiero C., Turner F., Yu L., Smith S., Talbot R., Pirani A., Brew F., Kaiser P., Hocking P.M., Mark M., Salmon S., Fulton J., Strom T.M., Haberer G., Weigend S., Preisinger R., Gholami M., Qanbari S., Simianer H., Watson K.A., Woolliams J.A., Burt D.W. (2013). Development of a high density 600K SNP genotyping array for chicken. BMC Genom., 14: 59. Search in Google Scholar

Leinonen I., Williams A.G., Wiseman J., Guy J., Kyriazakis I. (2012 a). Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Broiler production systems. Poultry Sci., 91: 8–25. Search in Google Scholar

Leinonen I., Williams A.G., Wiseman J., Guy J., Kyriazakis I. (2012 b). Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Egg production systems. Poultry Sci., 91: 26–40. Search in Google Scholar

Le Bouquin S., Huneau-Salaün A., Huonnic D., Balaine L., Martin S., Michel V. (2013). Aerial dust concentration in cage-housed, floor-housed, and aviary facilities for laying hens. Poultry Sci., 92: 2827–2833. Search in Google Scholar

Li N., Ren Z., Li D., Zeng L. (2020). Automated techniques for monitoring the behaviour and welfare of broilers and laying hens: towards the goal of precision livestock farming. Review. Animal, 14: 617–625. Search in Google Scholar

Liu R., Xing S., Wang J., Zheng M., Cui H., Crooijmans R.P.M.A., Li Q., Zhao G., Wen J. (2019). A new chicken 55K SNP genotyping array. BMC Genom., 20: 410. Search in Google Scholar

Lonc E., Plewa K. (2010). Microbiological air contamination in poultry houses. Polish J. Environ. Stud.,19: 15–19. Search in Google Scholar

Maharjan P., Martinez D.A., Weil J., Suesuttajit N., Umberson C., Mullenix G., Hilton K.M., Beitia A., Coon C.N. (2021). Physiological growth trend of current meat broilers and dietary protein and energy management approaches for sustainable broiler production. Animal, 15: 100284. Search in Google Scholar

Mann J.N. (2018). A brief history of meat in the human diet and current health implications. Meat Sci., 114: 169–179. Search in Google Scholar

Mekonnen M.M., Hoekstra A.Y. (2011). National water footprint accounts: The green, blue and grey water footprint of production and consumption. Volume 1: Main Report. Daugherty Water for Food Global Institute: Faculty Publications., 85. Search in Google Scholar

Mekonnen M.M., Hoekstra A.Y. (2012). A global assessment of the water footprint of farm animal products. Ecosyst., 15: 401–415. Search in Google Scholar

Mekonnen M.M., Neale C.M.U., Ray C., Erickson G.E., Hoekstra A.Y. (2019). Water productivity in meat and milk production in the US from 1960 to 2016. Environ. Int., 132: 105084. Search in Google Scholar

Morejohn G.V. (1968). Breakdown of isolation mechanisms in two species of captive junglefowl (Gallus gallus and Gallus sonneratii). Evolution, 22: 576–582. Search in Google Scholar

Mubako S.T. (2018). Blue, green, and grey water quantification approaches: A bibliometric and literature review. J. Contemp. Water Res. Educ., 165: 4–19. Search in Google Scholar

Mussini F.J. (2012). Comparative response of different broiler genotypes to dietary nutrient levels. Graduate Theses and Dissertations, Retrieved from: https://scholarworks.uark.edu/etd/471 Search in Google Scholar

McMichael A.J., Powles J.W., Butler C.D., Uauy R. (2007). Food, livestock production, energy, climate change and health. Lancet, 370: 1253–1263. Search in Google Scholar

NASA Earth’s water. https://olc.worldbank.org/sites/default/files/sco/E7B1C4DE-C187-5EDB-3EF2-897802DEA3BF/Nasa/chapter1.html. Accessed: 14.11.2022. Search in Google Scholar

NASA Goddard Institute for Space Studies https://data.giss.nasa.gov/gistemp/graphs_v4/ Accessed: 14.11.2022. Search in Google Scholar

NRDC (2022). https://www.nrdc.org/work. Accessed: 10.11.2022. Search in Google Scholar

OECD/FAO (2022). OECD-FAO agricultural outlook 2022–2031. https://www.fao.org/3/CC0308EN/Meat.pdf Search in Google Scholar

Olejnik K., Popiela E., Opaliński S. (2022). Emerging precision management methods in poultry sector. Review. Agriculture, 12: 718. Search in Google Scholar

Pedrinelli V., Teixeira F.A., Queiroz M.R., Brunetto M.A. (2022). Environmental impact of diets for dogs and cats. Sci. Rep., 12: 18510. Search in Google Scholar

Pelletier N. (2018). Changes in the life cycle environmental footprint of egg production in Canada from 1962 to 2012. J. Clean. Prod., 176: 1144–1153. Search in Google Scholar

Pelletier N., Ibarburu M., Xin H. (2014). Comparison of the environmental footprint of the egg industry in the United States in 1960 and 2010. Poultry Sci., 93: 241–255. Search in Google Scholar

Postel S.L., Gretchen C.D., Ehrlich P.R. (1996). Human appropriation of renewable fresh water. Science, 271: 785–788. Search in Google Scholar

Putman B., Thoma G., Burek J., Matlock M. (2017). A retrospective analysis of the United States poultry industry: 1965 compared with 2010. Agric. Syst., 157: 107–117. Search in Google Scholar

Ritchie H., Rosado P., Roser M. (2019). Meat and dairy production. Published online at OurWorldInData.org, https://ourworldindata.org/meat-production. Search in Google Scholar

Rockström J. (1999). On-farm green water estimates as a tool for increased food production in water scarce regions. Phys. Chem. Earth, 24: 375–383. Search in Google Scholar

Rossi M., Nys Y., Anton M., Bain M., De Ketelaere B., De Reu K., Dunn I., Gautron J., Hammershøj M., Hidalgo A., Meluzzi A., Mertens K., Nau F., Sirri F. (2013). Developments in understanding and assessment of egg and egg product quality over the last century. World's Poultry Sci. J., 69: 414–429. Search in Google Scholar

Rowe E., Dawkins M.S., Gebhardt-Henrich S.G. (2019). A systematic review of precision livestock farming in the poultry sector: Is technology focussed on improving bird welfare? Animals, 9: 614. Search in Google Scholar

Róźewicz M., Grabiźski J., Sułek A. (2018). Possibilities and limitations in the use of legumes from domestic cultivation in poultry ˙ feed in the context of fodder protein deficit. Pol. J. Agron., 35: 32–44. Search in Google Scholar

Saleh M., Seedorf J., Hartung J. (2004). Inhalable and respirable dust in work place atmospheres of laying hen houses. Proc. Intern. Soc. Anim. Hygiene, Saint-Malo, France, pp. 211–212. Search in Google Scholar

Shepherd T.A., Zhao Y., Li H., Stinn J.P., Hayes M.D., Xin H. (2015). Environmental assessment of three egg production systems - Part II. Ammonia, greenhouse gas, and particulate matter emissions. Poultry Sci., 94: 534–543. Search in Google Scholar

Schmidt C.J., Persia M.E., Feierstein E., Kingham B., Saylor W.W. (2009). Comparison of a modern broiler line and a heritage line unselected since the 1950s. Poultry Sci., 88: 2610–2619. Search in Google Scholar

Szendrő Zs., Horn P., Kovács M. (2022). Animal husbandry 1. Why is animal husbandry always guilty? (in Hungarian). Magyar Tudomány, 183: 1265–1275. Search in Google Scholar

Tallentire C.W., Mackenzie S.G., Kyriazakis I. (2018). Can novel ingredients replace soybeans and reduce the environmental burdens of European livestock systems in the future? J. Clean. Prod., 187: 338–347. Search in Google Scholar

Teng J., Gao N., Zhang H., Li X., Li J., Zhang H., Zhang X., Zhang Z. (2019). Performance of whole genome prediction for growth traits in a crossbred chicken population. Poultry Sci., 98: 1968–1975. Search in Google Scholar

Thiruvenkadan A.K., Prabakaran R., Panneerselvam S. (2011). Broiler breeding strategies over the decades: an overview. Worlds Poult. Sci. J., 67: 309–336. Search in Google Scholar

United Nations (2022). https://www.un.org/en/desa Search in Google Scholar

WHO (2020). https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance Search in Google Scholar

Williams A.G., Audsley E., Sandars D.L. (2006). Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Main Report Defra Research Project ISO205, Bedford: Cranfield University and Defra. Search in Google Scholar

Zarghi H., Golian A., Hassanabadi A., Khaligh F. (2022). Effect of zinc and phytase supplementation on performance, immune response, digestibility and intestinal features in broilers fed a wheat-soybean meal diet. Ital. J. Anim. Sci., 21: 430–444. Search in Google Scholar

Zhao Y., Zhao D., Ma H., Liu K., Atilgan A., Xin H. 2(016). Environmental assessment of three egg production systems – Part III: Airborne bacteria concentrations and emissions. Poultry Sci., 95: 1473–1481. Search in Google Scholar

Zou A., Nadeau K., Xiong X., Wang P.W., Copeland J.K., Lee J.Y., Pierre Y.St., Ty M., Taj B., Brumell J.H., Guttman D.S., Sharif S., Korve D., Parkinson J. (2022). Systematic profiling of the chicken gut microbiome reveals dietary supplementation with antibiotics alters expression of multiple microbial pathways with minimal impact on community structure. Microbiome, 10: 127. Search in Google Scholar

Zuidhof M.J., Schneider L.B., Carney L.V., Korver R.D., Robinson E.F. (2014). Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poultry Sci., 93: 2970–2982. Search in Google Scholar

Zuidhof M.J (2018). Lifetime productivity of conventionally and precision-fed broiler breeders. Poultry Sci., 97: 3921–3937. Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine