Détails du magazine
Première parution
25 Nov 2011
4 fois par an
Accès libre

Prebiotic effects of dietary xylooligosaccharides on fish gut microbiota, growth, and immunological parameters – a review

Publié en ligne: 12 Jul 2023
Volume & Edition: AHEAD OF PRINT
Pages: -
Reçu: 27 Dec 2022
Accepté: 31 May 2023
Détails du magazine
Première parution
25 Nov 2011
4 fois par an

Aachary A.A., Prapulla S.G. (2011). Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr. Rev. Food Sci. F., 10: 2–16. Search in Google Scholar

Abasubong K.P., Li X.F., Adjoumani J.Y., Jiang G.Z., Desouky H.E., Liu W.B. (2022). Effects of dietary xylooligosaccharide prebiotic supplementation on growth, antioxidant and intestinal immune-related genes expression in common carp (Cyprinus carpio) fed a high-fat diet. J. Anim. Physiol. Anim. Nutr., 106: 403–418. Search in Google Scholar

Abasubong K.P., Li X.F., Zhang D.D., Jia E.T., Xiang-Yang Y., Xu C., Liu W.B. (2018a). Dietary supplementation of xylooligosaccharides benefits the growth performance and lipid metabolism of common carp (Cyprinus carpio) fed high-fat diets. Aquac. Nutr., 24, 1416–1424. Search in Google Scholar

Abasubong K.P., Liu W.B., Adjoumani Y.J.J., Xia S.L., Xu C., Li X.F. (2019). Xylooligosaccharides benefits the growth, digestive functions and TOR signaling in Megalobrama amblycephala fed diets with fish meal replaced by rice protein concentrate. Aquac., 500, 417–428. Search in Google Scholar

Abasubong K.P., Liu W.B., Zhang D.D., Yuan X.Y., Xia S.L., Xu C., Li X.F. (2018b). Fishmeal replacement by rice protein concentrate with xylooligosaccharides supplement benefits the growth performance, antioxidant capability and immune responses against Aeromonas hydrophila in blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol., 78, 177–186. Search in Google Scholar

Abd-elaziz R.A., Shukry M., Abdel-latif H.M.R., Saleh R.M. (2023). Growth-promoting and immunostimulatory effects of phytobiotics as dietary supplements for Pangasianodon hypophthalmus fingerlings. Fish Shellfish Immunol., 133, 108531. Search in Google Scholar

Abdel-Latif H.M.R., Chaklader M.R., Shukry M., Ahmed H.A., Khallaf M.A. (2023). A multispecies probiotic modulates growth, digestive enzymes, immunity, hepatic antioxidant activity, and disease resistance of Pangasianodon hypophthalmus fingerlings. Aquac., 563, 738948. Search in Google Scholar

Abdel-Latif H.M.R., Yilmaz E., Dawood M.A.O., Ringø E., Ahmadifar E., Yilmaz S. (2022). Shrimp vibriosis and possible control measures using probiotics, postbiotics, prebiotics, and synbiotics: A review. Aquac., 551, 737951. Search in Google Scholar

Abdelmalek B.E., Driss D., Kallel F., Guargouri M., Missaoui H., Chaabouni S.E., Ayadi M. A., Bougatef A. (2015). Effect of xylan oligosaccharides generated from corncobs on food acceptability, growth performance, haematology and immunological parameters of Dicentrarchus labrax fingerlings. Fish Physiol. Biochem., 41, 1587–1596. Search in Google Scholar

Akpinar O., Ak O., Kavas A., Bakir U., Yilmaz L. (2007). Enzymatic production of xylooligosaccharides from cotton stalks. J. Agric. Food Chem., 55, 5544–5551. Search in Google Scholar

Azeredo R., Machado M., Kreuz E., Wuertz S., Oliva-Teles A., Enes P., Costas B. (2017). The European seabass (Dicentrarchus labrax) innate immunity and gut health are modulated by dietary plant-protein inclusion and prebiotic supplementation. Fish Shellfish Immunol., 60, 78–87. Search in Google Scholar

Belenguer A., Duncan S.H., Calder A.G., Holtrop G., Louis P., Lobley G.E., Flint H.J. (2006). Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl. Environ. Microbiol., 72, 3593–3599. Search in Google Scholar

Bongers A., Van Den Heuvel E.G. (2003). Prebiotics and the bioavailability of minerals and trace elements. Food Rev. Int., 19, 397–422. Search in Google Scholar

Burr G., Gatlin Iii D., Ricke S. (2005). Microbial ecology of the gastrointestinal tract of fish and the potential application of prebiotics and probiotics in finfish aquaculture. J. World Aquac. Soc., 36, 425–436. Search in Google Scholar

Burr G., Hume M., Ricke S., Nisbet D., Gatlin D.J.M.E. (2010). In vitro and in vivo evaluation of the prebiotics GroBiotic®-A, inulin, mannanoligosaccharide, and galactooligosaccharide on the digestive microbiota and performance of hybrid striped bass (Morone chrysops× Morone saxatilis). Microb. Ecol., 59, 187–198. Search in Google Scholar

Carbone D., Faggio C. (2016). Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax. Fish Shellfish Immunol., 54, 172–8. Search in Google Scholar

Chen W.L., Ge Y.P., Sun M., He C.F., Zhang L., Liu W.B., Li H.X., Li X.F. (2022). Insights into the correlations between prebiotics and carbohydrate metabolism in fish: Administration of xylooligosaccharides in Megalobrama amblycephala offered a carbohydrate-enriched diet. Aquac., 561, 738684. Search in Google Scholar

Dawood M.A.O., Koshio S., Esteban M.Á. (2018.) Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aquac., 10, 950–974. Search in Google Scholar

De Maesschalck C., Eeckhaut V., Maertens L., De Lange L., Marchal L., Nezer C., De Baere S., Croubels S., Daube G., Dewulf J. (2015). Effects of xylo-oligosaccharides on broiler chicken performance and microbiota. Appl. Environ. Microbiol., 81, 5880–5888. Search in Google Scholar

Deng G., Duan J., Mu H., Yan B., Chen H., Hu G., Gao W., Gao H. (2021). Effects of dietary short-chain fatty acid salts on the growth performance, digestive, antioxidant and immune enzyme activities, immune-related gene expression and resistance to Vibro parahaemolytics infection in juvenile ridgetail white prawn (Exopalaemon carinicauda). Aquac. Res., 52, 6716–6725. Search in Google Scholar

Dimitroglou A., Merrifield D.L., Carnevali O., Picchietti S., Avella M., Daniels C., Güroy D., Davies S.J. (2011). Microbial manipulations to improve fish health and production–a Mediterranean perspective. Fish Shellfish Immunol., 30, 1–16. Search in Google Scholar

El-Saadony M.T., Alagawany M., Patra A.K., Kar I., Tiwari R., Dawood M.A.O., Dhama K., Abdel-Latif H.M.R. (2021). The functionality of probiotics in aquaculture: An overview. Fish Shellfish Immunol., 117, 36–52. Search in Google Scholar

Fao. (2021). The State of Food Security and Nutrition in the World (SOFI). Food and Agriculture Organization of the United Nations, Rome, Italy., 240 p. Search in Google Scholar

Geraylou Z., Souffreau C., Rurangwa E., D'hondt S., Callewaert L., Courtin C.M., Delcour J.A., Buyse J., Ollevier F. (2012). Effects of arabinoxylan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. Fish Shellfish Immunol., 33, 718–724. Search in Google Scholar

Geraylou Z., Souffreau C., Rurangwa E., De Meester L., Courtin C.M., Delcour J.A., Buyse J., Ollevier F. (2013a). Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut microbiota of juvenile Siberian sturgeon (Acipenser baerii). Fish Shellfish Immunol., 35, 766–775. Search in Google Scholar

Geraylou Z., Souffreau C., Rurangwa E., Maes G.E., Spanier K.I., Courtin C.M., Delcour J.A., Buyse J., Ollevier F. (2013b). Prebiotic effects of arabinoxylan oligosaccharides on juvenile Siberian sturgeon (Acipenser baerii) with emphasis on the modulation of the gut microbiota using 454 pyrosequencing. FEMS Microbiol. Ecol., 86, 357–371. Search in Google Scholar

Gibson G.R., Scott K.P., Rastall R.A., Tuohy K.M., Hotchkiss A., Dubert-Ferrandon A., Gareau M., Murphy E.F., Saulnier D., Loh G. (2010). Dietary prebiotics: current status and new definition. Food Sci. Technol. Bull Funct. Foods, 7, 1–19. Search in Google Scholar

Grisdale-Helland B., Helland S.J., Gatlin Iii D.M.J.A. (2008). The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquac., 283, 163–167. Search in Google Scholar

Guardiola F.A., Porcino C., Cerezuela R., Cuesta A., Faggio C., Esteban M.A. (2016). Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax). Fish Shellfish Immunol., 52, 298–308. Search in Google Scholar

Guerreiro I., Couto A., Machado M., Castro C., Pousão-Ferreira P., Oliva-Teles A., Enes P. (2016). Prebiotics effect on immune and hepatic oxidative status and gut morphology of white sea bream (Diplodus sargus). Fish Shellfish Immunol., 50, 168–174. Search in Google Scholar

Guerreiro I., Couto A., Pérez-Jiménez A., Oliva-Teles A., Enes P. (2015a). Gut morphology and hepatic oxidative status of European sea bass (Dicentrarchus labrax) juveniles fed plant feedstuffs or fishmeal-based diets supplemented with short-chain fructo-oligosaccharides and xylo-oligosaccharides. Br. J. Nutr., 114, 1975–84. Search in Google Scholar

Guerreiro I., Oliva-Teles A., Enes P. (2015b). Improved glucose and lipid metabolism in European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and xylooligosaccharides. Aquac., 441, 57–63. Search in Google Scholar

Guerreiro I., Oliva-Teles A., Enes P. (2018a). Prebiotics as functional ingredients: focus on Mediterranean fish aquaculture. Rev. Aquac., 10, 800–832. Search in Google Scholar

Guerreiro I., Serra C.R., Oliva-Teles A., Enes P. (2018b). Short communication: gut microbiota of European sea bass (Dicentrarchus labrax) is modulated by short-chain fructooligosaccharides and xylooligosaccharides. Aquac. Int., 26, 279–288. Search in Google Scholar

Gufe C., Ngenyoung A., Rattanarojpong T., Khunrae P. (2021). Investigation into the effects of CbXyn10C and Xyn11A on xylooligosaccharide profiles produced from sugarcane bagasse and rice straw and their impact on probiotic growth. Bioresour. Technol., 126319. Search in Google Scholar

Gullón P., Moura P., Esteves M.P., Girio F.M., Domínguez H., Parajó J.C. (2008). Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria. J. Agric. Food Chem., 56, 7482–7487. Search in Google Scholar

Hahor W., Thongprajukaew K., Suanyuk N. (2019). Effects of dietary supplementation of oligosaccharides on growth performance, gut health and immune response of hybrid catfish (Pangasianodon gigas × Pangasianodon hypophthalmus). Aquac., 507, 97–107. Search in Google Scholar

Hoseinifar S.H., Esteban M.Á., Cuesta A., Sun Y.Z. (2015). Prebiotics and fish immune response: A review of current knowledge and future perspectives. Rev. Fish. Sci. Aquac., 23, 315–328. Search in Google Scholar

Hoseinifar S.H., Khalili M., Rostami H.K., Esteban M.Á., (2013). Dietary galactooligosaccharide affects intestinal microbiota, stress resistance, and performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immunol., 35, 1416–1420. Search in Google Scholar

Hoseinifar S.H., Khalili M., Sun Y.Z. (2016a). Intestinal histomorphology, autochthonous microbiota and growth performance of the oscar (Astronotus ocellatus Agassiz, 1831) following dietary administration of xylooligosaccharide. J. Appl. Ichthyol., 32, 1137–1141. Search in Google Scholar

Hoseinifar S.H., Mirvaghefi A., Amoozegar M.A., Merrifield D.L., Ringø E. (2017). In vitro selection of a synbiotic and in vivo evaluation on intestinal microbiota, performance and physiological response of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquac. Nutr., 23, 111–118. Search in Google Scholar

Hoseinifar S.H., Ringø E., Shenavar Masouleh A., Esteban M.Á. (2016b). Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Rev. Aquac., 8, 89–102. Search in Google Scholar

Hoseinifar S.H., Sharifian M., Vesaghi M.J., Khalili M., Esteban M.Á. (2014). The effects of dietary xylooligosaccharide on mucosal parameters, intestinal microbiota and morphology and growth performance of Caspian white fish (Rutilus frisii kutum) fry. Fish Shellfish Immunol., 39, 231–236. Search in Google Scholar

Iliev I., Vasileva T., Bivolarski V., Momchilova A., Ivanova I. (2020). Metabolic profiling of xylooligosaccharides by Lactobacilli. Polym., 12, 2387. Search in Google Scholar

Kawarazuka N., Béné C. (2010). Linking small-scale fisheries and aquaculture to household nutritional security: an overview. Food Secur., 2, 343–357. Search in Google Scholar

Li S., Heng X., Guo L., Lessing D.J., Chu W. (2022). SCFAs improve disease resistance via modulate gut microbiota, enhance immune response and increase antioxidative capacity in the host. Fish Shellfish Immunol., 120, 560–568. Search in Google Scholar

Liu J., Wang B., Lai Q., Lu Y., Li L., Li Y., Liu S. (2022). Boosted growth performance, immunity, antioxidant capacity and disease resistance of crucian carp (Carassius auratus) by single or in combination dietary Bacillus subtilis and xylo-oligosaccharides. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 256, 109296. Search in Google Scholar

Luan Y., Li M., Zhou W., Yao Y., Yang Y., Zhang Z., Ringø E., Erik Olsen R., Liu Clarke J., Xie S., Mai K., Ran C., Zhou Z. (2023). The Fish Microbiota: Research Progress and Potential Applications. Engineering., In Press, Journal Pre-proof, Available online 16 March 2023. Search in Google Scholar

Manning T.S., Gibson, G.R. (2004). Prebiotics. Best Pract. Res. Clin. Gastroenterol., 18, 287–298. Search in Google Scholar

Merrifield D.L., Bradley G., Baker R.T.M., Davies S. J. (2010a). Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquac. Nutr., 16, 496–503. Search in Google Scholar

Merrifield D.L., Dimitroglou A., Foey A., Davies S.J., Baker R.T.M., Bøgwald J., Castex M. & Ringø, E. 2010b. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquac., 302, 1–18. Search in Google Scholar

Merrifield D.L., Rodiles A. )2015). 10 – The fish microbiome and its interactions with mucosal tissues. In: Beck B.H., Peatman E. (eds.), Mucosal Health in Aquaculture, San Diego: Academic Press, 273–295. Search in Google Scholar

Morshedi V., Agh N., Marammazi J.G., Noori F., Mohammadian T., Mozanzadeh M.T. (2019). Combined effects of dietary bovine lactoferrin, Lactobacillus plantarum, and xylooligosaccharide on hemato-immunological and digestive enzymes of silvery-black porgy (Sparidentex hasta) fingerlings. Comp. Clin. Path., 28, 731–736. Search in Google Scholar

Morshedi V., Agh N., Noori F., Jafari F., Ghasemi A., Mozanzadeh M.T. (2020). Effects of single and combined supplementation of dietary probiotic with bovine lactoferrin and xylooligosaccharide on hemato-immunological and digestive enzymes of silvery-black porgy fingerlings. Ann. Anim. Sci., 20, 137–155. Search in Google Scholar

Morshedi V., Agh N., Noori F., Jafari F., Tukmechi A., Marammazi J., Pagheh E. (2018). Effects of dietary xylooligosaccharide on growth and feeding performance, body composition and physiological responses of sobaity seabream (Sparidentex hasta) juvenile. Aquac. Nutr., 24, 1796–1803. Search in Google Scholar

Mussatto S.I., Mancilha I.M. (2007). Non-digestible oligosaccharides: A review. Carbohydr. Polym., 68, 587–597. Search in Google Scholar

Nawaz A., Bakhsh Javaid A., Irshad S., Hoseinifar S.H., Xiong H. (2018). The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. Fish Shellfish Immunol., 76, 272–278. Search in Google Scholar

Nayak S.K. (2010). Probiotics and immunity: a fish perspective. Fish Shellfish Immunol., 29, 2–14. Search in Google Scholar

Peng P., Peng F., Bian J., Xu F., Sun R. (2011). Studies on the starch and hemicelluloses fractionated by graded ethanol precipitation from bamboo Phyllostachys bambusoides f. shouzhu Yi. J. Agric. Food Chem., 59, 2680–2688. Search in Google Scholar

Petrova P., Petrov K. (2017). Prebiotic–probiotic relationship: The genetic fundamentals of polysaccharides conversion by Bifidobacterium and Lactobacillus genera. Handbook of Food Bioengineering, Academic Press, 237–278. Search in Google Scholar

Poolsawat L., Li X., Xu X., Rahman M.M., Boonpeng N., Leng X. (2021). Dietary xylooligosaccharide improved growth, nutrient utilization, gut microbiota and disease resistance of tilapia (Oreochromis niloticus x O. aureus). Anim. Feed Sci. Technol., 275, 114872. Search in Google Scholar

Qi Z., Zhang X.H., Boon N., Bossier P. (2009). Probiotics in aquaculture of China—current state, problems and prospect. Aquac., 290, 15–21. Search in Google Scholar

Rawling M., Leclercq E., Foey A., Castex M., Merrifield, D.L. (2021). A novel dietary multi-strain yeast fraction modulates intestinal toll-like-receptor signalling and mucosal responses of rainbow trout (Oncorhynchus mykiss). PloS One.,16, e0245021. Search in Google Scholar

Rawls J.F., Mahowald M.A., Goodman A.L., Trent C.M., Gordon J.I. (2007). In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proc. Natl. Acad. Sci. U.S.A., 104, 7622–7627. Search in Google Scholar

Rawls J.F., Mahowald M.A., Ley R.E., Gordon J.I. (2006). Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell, 127, 423-33. Search in Google Scholar

Ringø E., Olsen R.E., Gifstad T.Ø., Dalmo R.A., Amlund H., Hemre G.I., Bakke A. M. (2010). Prebiotics in aquaculture: a review. Aquac. Nutr., 16, 117–136. Search in Google Scholar

Ringø E., Zhou Z., Vecino J.L.G., Wadsworth S., Romero J., Krogdahl Å., Olsen R.E., Dimitroglou A., Foey A., Davies S., Owen M., Lauzon H.L., Martinsen L.L., De Schryver P., Bossier P., Sperstad S., Merrifield D.L. (2016). Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac., 22, 219–282. Search in Google Scholar

Roberfroid M. (2007). Prebiotics: the concept revisited. J. Nutr., 137, 830s–7s. Search in Google Scholar

Romero J., Ringø E., Merrifield D.L. (2014). The Gut Microbiota of Fish. In Aquaculture Nutrition, Merrifield D.L, Ringø E. (eds). Wiley Online Library. Search in Google Scholar

Rurangwa E., Laranja J.L., Van Houdt R., Delaedt Y., Geraylou Z., Van De Wiele T., Van Loo J., Van Craeyveld V., Courtin C.M., Delcour J.A., Ollevier F. (2009). Selected nondigestible carbohydrates and prebiotics support the growth of probiotic fish bacteria mono-cultures in vitro. J. Appl. Microbiol., 106, 932–940. Search in Google Scholar

Safari O., Paolucci M., Motlagh H.A. (2017). Effects of synbiotics on immunity and disease resistance of narrow-clawed crayfish, Astacus leptodactylus leptodactylus (Eschscholtz, 1823). Fish Shellfish Immunol., 64, 392–400. Search in Google Scholar

Santos L., Ramos F. (2018). Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. Int. J. Antimicrob. Agents, 52, 135–143. Search in Google Scholar

Sekirov I., Russell S.L., Antunes L.C.M., Finlay B.B. (2010). Gut microbiota in health and disease. Physiol. Rev., 90:3, 859–904. Search in Google Scholar

Song S.K., Beck B.R., Kim D., Park J., Kim J., Kim H.D., Ringø E. (2014). Prebiotics as immunostimulants in aquaculture: a review. Fish Shellfish Immunol., 40, 40–8. Search in Google Scholar

Subasinghe R. (2009). Disease control in aquaculture and the responsible use of veterinary drugs and vaccines: the issues, prospects and challenges. In: Basurco B., Rogers C. (eds.) The use of veterinary drugs and vaccines in Mediterranean aquaculture, Zaragoza, CIHEAM, p. 5–11. Search in Google Scholar

Subasinghe R., Soto D., Jia J. (2009). Global aquaculture and its role in sustainable development. Rev. Aquac., 1, 2–9. Search in Google Scholar

Sullam K.E., Essinger S.D., Lozupone C.A., O’connor M.P., Rosen G.L., Knight R., Kilham S.S., Russell J.A. (2012). Environmental and ecological factors that shape the gut bacterial communities of fish: a meta‐analysis. Mol. Ecol., 21, 3363–3378. Search in Google Scholar

Sun C.Y., Liu Y., Feng L., Jiang W.D., Wu P., Jiang J., Kuang S.Y., Tang L., Zhou X.Q. (2021). Xylooligosaccharide supplementation improved growth performance and prevented intestinal apoptosis in grass carp. Aquac., 535, 736360. Search in Google Scholar

Torrecillas S., Betancor M.B., Caballero M.J., Rivero F., Robaina L., Izquierdo M., Montero D. (2018). Supplementation of arachidonic acid rich oil in European sea bass juveniles (Dicentrarchus labrax) diets: effects on growth performance, tissue fatty acid profile and lipid metabolism. Fish Physiol. Biochem., 44, 283–300. Search in Google Scholar

Van Doan H., Hoseinifar S. H., Faggio C., Chitmanat C., Mai N.T., Jaturasitha S., Ringø E. (2018). Effects of corncob derived xylooligosaccharide on innate immune response, disease resistance, and growth performance in Nile tilapia (Oreochromis niloticus) fingerlings. Aquac., 495, 786–793. Search in Google Scholar

Van Doan H., Hoseinifar S. H., Tapingkae W., Seel-Audom M., Jaturasitha S., Dawood M.A.O., Wongmaneeprateep S., Thu T.T.N., Esteban M.Á. (2020). Boosted growth performance, mucosal and serum immunity, and disease resistance nile tilapia (Oreochromis niloticus) fingerlings using corncob-derived xylooligosaccharide and Lactobacillus plantarum CR1T5. Probiotics Antimicrob. Proteins, 12, 400–411. Search in Google Scholar

Vázquez M.J., Garrote G., Alonso J.L., Domínguez H., Parajó J.C. (2005). Refining of autohydrolysis liquors for manufacturing xylooligosaccharides: evaluation of operational strategies. Bioresour. Technol., 96, 889–96. Search in Google Scholar

Wang C.A., Xu Z., Lu S., Jiang H., Li J., Wang L., Fan Z., Wu D., Zhang Y., Han S., Liu Y., Liu H., Li Z. (2022). Effects of dietary xylooligosaccharide on growth, digestive enzymes activity, intestinal morphology, and the expression of inflammatory cytokines and tight junctions genes in triploid Oncorhynchus mykiss fed a low fishmeal diet. Aquac. Rep., 22, 100941. Search in Google Scholar

Wang W., Sun J., Liu C., Xue Z. (2017). Application of immunostimulants in aquaculture: current knowledge and future perspectives. Aquac. Res., 48, 1–23. Search in Google Scholar

Xu B., Wang Y., Li J., Lin Q. (2009). Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogynogenetic crucian carp (Carassius auratus gibelio). Fish Physiol. and Biochem., 35, 351–357. Search in Google Scholar

Zhang Z.H., Chen M., Xie S.W., Chen X.Q., Liu Y.J., Tian L.X., Niu J. (2020). Effects of dietary xylooligosaccharide on growth performance, enzyme activity and immunity of juvenile grass carp, Ctenopharyngodon idellus. Aquac. Rep., 18, 100519. Search in Google Scholar

Articles recommandés par Trend MD