1. bookVolume 23 (2023): Edition 3 (July 2023)
Détails du magazine
Première parution
25 Nov 2011
4 fois par an
Accès libre

The applicability of nanobiotechnology-related approaches to veterinary medicine and assisted animal reproduction – A review

Publié en ligne: 26 Jul 2023
Volume & Edition: Volume 23 (2023) - Edition 3 (July 2023)
Pages: 735 - 744
Reçu: 31 Jan 2023
Accepté: 27 Apr 2023
Détails du magazine
Première parution
25 Nov 2011
4 fois par an

Abdalhamed A.M., Ghazy A.A., Ibrahim E.S., Arafa A.A., Zeedan G.S.G. (2021). Therapeutic effect of biosynthetic gold nanoparticles on multidrug-resistant Escherichia coli and Salmonella species isolated from ruminants. Vet. World, 14: 3200–3210. Search in Google Scholar

Abdel-Halim B.R., Moselhy W.A., Helmy N.A. (2018). Developmental competence of bovine oocytes with increasing concentrations of nano-copper and nano-zinc particles during in vitro maturation. Asian Pacific J. Reprod., 7: 161–166. Search in Google Scholar

Abdelnour S.A., Alagawany M., Hashem N.M., Farag M.R., Alghamdi E.S., Hassan F.U., Bilal R.M., Elnesr S.S., Dawood M.A., Nagadi S.A., Elwan H.A.M., ALmasoudi A.G., Attia Y.A. (2021). Nanominerals: fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals, 11: 1916. Search in Google Scholar

Babayevska N., Woźniak A., Iatsunskyi I., Florczak P., Jarek M., Janiszewska E., Załęski K., Zalewski T. (2023). Multifunctional ZnO:Gd@ZIF-8 hybrid nanocomposites with tunable luminescent-magnetic performance for potential bioapplication. Biomater. Adv., 144: 213206. Search in Google Scholar

Banach M., Kowalski Z., Wzorek Z. (2007). Nanosilver: production, antibacterial properties, application (in Polish). Chemik, 9: 435‒438. Search in Google Scholar

Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev., 46: 4218–4244. Search in Google Scholar

Chen C., Wang Z., Zhang J., Fan X., Xu L., Tang X. (2019). Dextranconjugated caged siRNA nanoparticles for photochemical regulation of RNAi-induced gene silencing in cells and mice. Bioconjug. Chem., 30: 1459–1465. Search in Google Scholar

Chien Y., Hsiao YJ., Chou SJ. Lin T.Y., Yarmishyn A.A., Lai W.Y, Lee M.S, Lin Y.Y., Lin T.W., Hwang D.K., Lin T.C, Chiou S.H., Chen S.J., Yang Y.P. (2022). Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. J. Nanobiotechnol., 20: 511. Search in Google Scholar

Chinnappan R., Attas S.A., Kaman W.E., Bikker F.J., Zourob M. (2017). Development of magnetic nanoparticle based calorimetric assay for the detection of bovine mastitis in cow milk. Anal. Biochem., 523: 58–64. Search in Google Scholar

Conte C., Monteiro P.F., Gurnani P., Stolnik S., Ungaro F., Quaglia F., Clarke P., Grabowska A., Kavallaris M., Alexander C. (2021). Multi-component bioresponsive nanoparticles for synchronous delivery of docetaxel and TUBB3 siRNA to lung cancer cells. Nanoscale 13: 11414–11426. Search in Google Scholar

Dawod A., Osman N., Heikal H.S., Ali K.A., Kandil O.M., Shehata A.A., Hafez H.M., Mahboub H. (2021). Impact of nano-bromocriptine on egg production performance and prolactin expression in layers. Animals, 11: 2842. Search in Google Scholar

Deptuła T., Warowicka A., Woźniak A., Grzeszkowiak M., Jarzebski M., Bednarowicz M., Patkowski A., Słomski R. (2015). Cytotoxicity of thermo-responsive polymeric nanoparticles based on N-isopropylacrylamide for potential application as a bioscaffold. Acta Bioch. Pol., 62: 311–316. Search in Google Scholar

Dhand C., Dwivedi N., Loh X.J., Ng Jie Ying A., Verma N.K., Beuerman R. W., Lakshminarayanan R., Ramakrishna S. (2015). Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv., 5: 105003–105037. Search in Google Scholar

Ding Y., Jiang Z., Saha K., Kim C.S., Kim S.T., Landis R.F., Rotello V.M. (2014). Gold nanoparticles for nucleic acid delivery. Mol. Ther., 22: 1075–1083. Search in Google Scholar

Duarte C.M., Carneiro C., Cardoso S., Freitas P.P., Bexiga R. (2017). Semi-quantitative method for Staphylococci magnetic detection in raw milk. J. Dairy Res., 84: 80–88. Search in Google Scholar

Durfey C.L., Swistek S.E., Liao S.F., Crenshaw M.A., Clemente H.J., Thirumalai R., Steadman C.S., Ryan P.L., Willard S.T., Feugang J.M. (2019). Nanotechnology-based approach for safer enrichment of semen with best spermatozoa. J. Anim. Sci. Biotechnol., 10: 14. Search in Google Scholar

Dzięgiel N., Jura J., Samiec M. (2022). Effect of high hydrostatic pressure on the in vitro development and molecular quality of transgenic rabbit embryos derived from nano-transfected zygotes. Ann. Anim. Sci., 22: 931–943. Search in Google Scholar

El-Sayed A., Kamel M. (2020). Advanced applications of nanotechnology in veterinary medicine. Environ. Sci. Pollut. Res., 27: 19073–19086. Search in Google Scholar

Falchi L., Galleri G. Dore G.M., Zedda M.T., Pau S., Bogliolo L., Ariu F., Pinna A., Nieddu S., Innocenzi P., Ledda S. (2018). Effect of exposure to CeO2 nanoparticles on ram spermatozoa during storage at 4°C for 96 hours. Reprod. Biol. Endocrinol., 16: 19. Search in Google Scholar

Faria M., Björnmalm M., Thurecht K.J., Kent S.J., Parton R.G., Kavallaris M., Johnston A.P.R., Gooding J.J., Corrie S.R., Boyd B.J., Thordarson P., Whittaker A.K., Stevens M.M. Prestidge C.A., Porter C.J.H., Parak W.J., Davis T.P., Crampin E.J., Caruso F. (2018). Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol., 13: 777–785. Search in Google Scholar

Farini V.L., Camaño C.V., Ybarra G., Viale D.L., Vichera G., Yakisich J.S., Radrizzani M. (2016). Improvement of bovine semen quality by removal of membrane-damaged sperm cells with DNA aptamers and magnetic nanoparticles. J. Biotechnol., 229: 33–41. Search in Google Scholar

Freitas Jr R.A. (2002). The future of nanofabrication and molecular scale devices in nanomedicine. Stud Health Technol Inform, 80: 45–59. Search in Google Scholar

Funkhouser J. (2002). Reinventing pharma: The theranostic revolution. Curr. Drug Discov., 2: 17–19. Search in Google Scholar

Gomaa S.E., Shaker G.H., Mosallam F.M., Abbas H.A. (2022). Knocking down Pseudomonas aeruginosa virulence by oral hypoglycemic metformin nano emulsion. World J. Microbiol. Biotechnol., 38: 119. Search in Google Scholar

Grześkowiak B.F., Sánchez-Antequera Y., Hammerschmid E., Döblinger M., Eberbeck D., Woźniak A., Słomski R., Plank C., Mykhaylyk O. (2015). Nanomagnetic activation as a way to control the efficacy of nucleic acid delivery. Pharm. Res., 32: 103–121. Search in Google Scholar

Grześkowiak B.F., Hryhorowicz M., Tusnio K., Grzeszkowiak M., Zaleski K., Lipinski D., Zeyland J., Mykhaylyk O., Słomski R., Jurga S., Woźniak A. (2016). Generation of transgenic porcine fibroblast cell lines using nanomagnetic gene delivery vectors. Mol. Biotechnol., 58: 351–361. Search in Google Scholar

Gurunathan S., Choi Y.J., Kim J.H. (2018). Antibacterial efficacy of silver nanoparticles on endometritis caused by Prevotella melaninogenica and Arcanobacterum pyogenes in dairy cattle. Int. J. Mol. Sci., 19: 1210. Search in Google Scholar

Hasan N., Cao J., Lee J., Hlaing S.P., Oshi M.A., Naeem M., Ki M.H., Lee B.L., Jung Y., Yoo J.W. (2019). Bacteria-targeted clindamycin loaded polymeric nanoparticles: Effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing. Pharmaceutics, 11: 236. Search in Google Scholar

Hashem N.M., El-Zarkouny S.Z., Taha T.A., Abo-Elezz Z.R. (2015). Oestrous response and characterization of the ovulatory wave following oestrous synchronization using PGF2α alone or combined with GnRH in ewes. Small Rumin. Res., 129: 84–87. Search in Google Scholar

Hashem N.M., Gonzalez-Bulnes A. (2020). State-of-the-art and prospective of nanotechnologies for smart reproductive management of farm animals. Animals, 10: 840. Search in Google Scholar

Hashem N.M., Sallam S. (2020). Reproductive performance of goats treated with free gonadorelin or nanoconjugated gonadorelin at estrus. Domest. Anim. Endocrinol., 71: 106390. Search in Google Scholar

Hashem N.M., El-Sherbiny H.R., Fathi M., Abdelnaby E.A. (2022). Nanodelivery system for ovsynch protocol improves ovarian response, ovarian blood flow Doppler velocities, and hormonal profile of goats. Animals, 12: 1442. Search in Google Scholar

Hassanein E.M., Hashem N.M., El-Azrak K.M. Gonzalez-Bulnes A., Hassan G.A., Salem M.H. (2021). Efficiency of GnRH-loaded chitosan nanoparticles for inducing LH secretion and fertile ovulations in protocols for artificial insemination in rabbit does. Animals, 11: 440. Search in Google Scholar

Heidari J., Seifdavati J., Mohebodini H., Sharifi R.S., Benemar H.A. (2019). Effect of nano zinc oxide on post-thaw variables and oxidative status of Moghani ram semen. Kafkas Univ. Vet. Fak. Derg., 25: 71–76. Search in Google Scholar

Hoshyar N., Gray S., Han H., Bao G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 11: 673–692. Search in Google Scholar

Hou X., Zaks T., Langer R., Dong Y. (2021). Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater., 6: 1078–1094. Search in Google Scholar

Howes P.D., Chandrawati R., Stevens M.M. (2014). Bionanotechnology. Colloidal nanoparticles as advanced biological sensors. Science, 346: 1247390. Search in Google Scholar

Ivashchenko O., Coy E., Peplinska B., Jarek M., Lewandowski M., Załęski K., Warowicka A., Woźniak A., Babutina T., Jurga-Stopa J., Dolinsek J., Jurga S. (2017 a). Influence of silver content on rifampicin adsorptivity for magnetite/Ag/rifampicin nanoparticles. Nanotechnology, 28: 055603. Search in Google Scholar

Ivashchenko O., Woźniak A., Coy E., Peplinska B., Gapiński J., Jurga S. (2017 b). Release and cytotoxicity studies of magnetite/Ag/antibiotic nanoparticles: an interdependent relationship. Colloids Surf. B., 152: 85–94. Search in Google Scholar

Jahanbin R., Yazdanshenas P., Amin A., Mohammadi S., Varnaseri H., Chamani M., Nazaran M., Bakhtiyarizadeh M. (2015). Effect of zinc nano-complex on bull semen quality after freeze-thawing process. J. Anim. Sci., 17: 371–380. Search in Google Scholar

Jiang N., Shrotriya P., Dassanayake R.D. (2022). NK-lysin antimicrobial peptide-functionalized nanoporous alumina membranes as biosensors for label-free bacterial endotoxin detection. Biochem. Biophys. Res. Commun., 636: 18–23. Search in Google Scholar

Jin J., Gu Y.-J., Man C.W.-Y., Cheng J., Xu Z., Zhang Y., Wang H., Lee V.H., Cheng S.H., Wong W.T. (2011). Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano, 5: 7838–7847. Search in Google Scholar

Kalhapure R.S., Mocktar C. Sikwal D.R., Sonawane S.J., Kathiravan M.K., Skelton A., Govender T. (2014). Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticles, Colloids Surf. B., 117: 303–311. Search in Google Scholar

Kalińska A., Jaworski S., Wierzbicki M., Gołębiewski M. (2019). Silver and copper nanoparticles – an alternative in future mastitis treatment and prevention? Int. J. Mol. Sci., 20: 1672. Search in Google Scholar

Kelkar S.S., Reineke T.M. (2011). Theranostics: combining imaging and therapy. Bioconjugate Chem., 22: 1879–1903. Search in Google Scholar

Kędziora A., Krzyżewska E., Dudek B., Bugla-Płoskońska G. (2016). The participation of outer membrane proteins in the bacterial sensitivity to nanosilver (in Polish). Post. Hig. Med. Dośw., 70: 610–617. Search in Google Scholar

Khalil W.A., El-Harairy M.A., Zeidan A.E.B., Hassanb M.A.E. (2019). Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation. Theriogenology, 126: 121–127. Search in Google Scholar

Konvicna J., Vargova M., Paulikova I., Kovac G., Kostecka Z. (2015). Oxidative stress and antioxidant status in dairy cows during prepartal and postpartal periods. Acta Vet. Brno, 84: 133–140. Search in Google Scholar

Lale S.V., Aravind A., Kumar D.S., Koul V. (2014). AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy. Biomacromolecules, 15: 1737–1752. Search in Google Scholar

Le T.T., Adamiak B., Benton D.J., Johnson C.J., Sharma S., Fenton R., McCauley J. W., Iqbal M., Cass A.E.G. (2014). Aptamer-based biosensors for the rapid visual detection of flu viruses. Chem. Commun., 50: 15533–15536. Search in Google Scholar

Li J., Wen Q., Gu F., An L., Yu T. (2022). Non-antibiotic strategies for prevention and treatment of internalized Staphylococcus aureus. Front. Microbiol., 13: 974984. Search in Google Scholar

Loh X.J., Lee T.C., Dou Q., Deen G.R. (2016). Utilising inorganic nanocarriers for gene delivery. Biomater. Sci., 4: 70–86. Search in Google Scholar

Mendes L.P., Pan J., Torchilin V. P. (2017). Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 22: 1401. Search in Google Scholar

Miotto G., Magro M., Terzo M., Zaccarin M., Da Dalt L., Bonaiuto E., Baratella D., Gabai G., Vianello F. (2016). Protein corona as a proteome fingerprint: the example of hidden biomarkers for cow mastitis. Colloids Surf. B, 140: 40–49. Search in Google Scholar

Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. (2021). Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 20: 101–124. Search in Google Scholar

Mrówczyński R., Jurga-Stopa J., Markiewicz R., Coy E.L., Jurga S., Woźniak A. (2016). Assessment of polydopamine coated magnetic nanoparticles in doxorubicin delivery. RSC Adv., 6: 5936–5943. Search in Google Scholar

Mujawar L.H., Moers A., Norde W, van Amerongen A. (2013). Rapid mastitis detection assay on porous nitrocellulose membrane slides. Anal. Bioanal. Chem., 405: 7469–7476. Search in Google Scholar

Mykhaylyk O., Antequera Y.S., Vlaskou D., Plank C. (2007). Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc., 2: 2391–2411. Search in Google Scholar

Nagasawa Y., Kiku Y., Sugawara K., Hirose A., Kai Ch., Kitano N., Takahashi T., Nochi T., Aso H., Sawada S., Akiyoshi K., Hayashi T. (2019). Staphylococcus aureus-specific IgA antibody in milk suppresses the multiplication of S. aureus in infected bovine udder. BMC Vet. Res., 15: 286. Search in Google Scholar

Nirala N.R., Shtenberg G. (2019). Gold nanoparticle size-dependent enhanced chemiluminescence for ultra-sensitive haptoglobin biomarker detection. Biomolecules, 9: 372. Search in Google Scholar

Nirala N.R., Harel Y., Lellouche J.P., Shtenberg G. (2020). Ultrasensitive haptoglobin biomarker detection based on amplified chemiluminescence of magnetite nanoparticles. J. Nanobiotechnol., 18: 6. Search in Google Scholar

Pamungkas F.A., Sianturi R.S.G., Wina E., Kusumaningrum D.A. (2016). Chitosan nanoparticle of hCG (Human Chorionic Gonadotrophin) hormone in increasing induction of dairy cattle ovulation. J. Ilmu Ternak Dan. Vet., 21: 34. Search in Google Scholar

Pant K., Neuber C., Zarschler K., Wodtke J., Meister S., Haag R., Pietzsch J., Stephan H. (2020). Active targeting of dendritic polyglycerols for diagnostic cancer imaging. Small, 16: 1905013. Search in Google Scholar

Park C.H., Kim H.J., Hixon D.L., Bubert A. (2003). Evaluation of the duopath verotoxin test for detection of shiga toxins in cultures of human stools. J. Clin. Microbiol., 41: 2650–2653. Search in Google Scholar

Perisse I.V., Fan Z., Singina G.N., White K.L., Polejaeva I.A. (2021). Improvements in gene editing technology boost its applications in livestock. Front. Genet., 11: 614688. Piriya A., Joseph P., Daniel K., Lakshmanan S., Kinoshita T., Muthusamy S. (2017). Colorimetric sensors for rapid detection of various analytes. Mater. Sci. Eng. C, 78: 1231–1245. Search in Google Scholar

Plank C., Scherer F., Schillinger U., Bergemann C., Anton M. (2003). Magnetofection: enhancing and targeting gene delivery with superparamagnetic nanoparticles and magnetic fields. J. Liposome Res., 13: 29–32. Search in Google Scholar

Ranjani S., Shruthy Priya P., Veerasami M., Hemalatha S. (2022). Novel polyherbal nanocolloids to control bovine mastitis. Appl. Biochem. Biotechnol., 194: 246–265. Search in Google Scholar

Richter A., Kurome M., Kessler B., Zakhartchenko V., Klymiuk N., Nagashima H., Wolf E., Wuensch A. (2012). Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig. BMC Biotechnol., 12: 84. Search in Google Scholar

Samiec M. (2022). Molecular mechanism and application of somatic cell cloning in mammals – past, present and future. Int. J. Mol. Sci., 23: 13786. Search in Google Scholar

Samiec M., Wiater J., Wartalski K., Skrzyszowska M., Trzcińska M., Lipiński D., Jura J., Smorąg Z., Słomski R., Duda M. (2022). The relative abundances of human leukocyte antigen-E, α-galactosidase A and α-gal antigenic determinants are biased by trichostatin a-dependent epigenetic transformation of tripletransgenic pig-derived dermal fibroblast cells. Int. J. Mol. Sci., 23: 10296. Search in Google Scholar

Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A.L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., Silva A.M., Durazzo A., Santini A., Garcia M.L., Souto E.B. (2020). Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials, 10: 292. Search in Google Scholar

Siddiqui S.A., Bahmid N.A., Taha A., Abdel-Moneim A.M.E., Shehata A.M., Tan Ch., Kharazmi M.S., Li Y., Assadpour E., Castro-Muñoz R., Jafari S.M. (2022). Bioactive-loaded nanodelivery systems for the feed and drugs of livestock; purposes, techniques and applications. Adv. Colloid Interface Sci., 308: 102772. Search in Google Scholar

Skrzyszowska M., Samiec M. (2021). Generating cloned goats by somatic cell nuclear transfer-molecular determinants and application to transgenics and biomedicine. Int. J. Mol. Sci., 22: 7490. Search in Google Scholar

Szweda P., Schielmann M., Frankowska A., Kot B., Zalewska M. (2013). Antibiotic resistance in Staphylococcus aureus strains isolated from cows with mastitis in eastern Poland and analysis of susceptibility of resistant strains to alternative non-antibiotic agents: lysostaphin, nisin and polymyxin B. J. Vet. Med. Sci., 76: 355–362. Search in Google Scholar

Szymczak M. (2018). Antimicrobial effect of silver nanoparticles against pathogenic bacteria (in Polish). Postępy Nauki i Technologii Przemysłu Rolno-Spożywczego, 73: 72–79. Search in Google Scholar

Vallejo-Timaran D.A., Arango-Sabogal J.C., Reyes-Velez J., Maldonado-Estrada J.G. (2020). Postpartum uterine diseases negatively impact the time to pregnancy in grazing dairy cows from highaltitude tropical herds. Prev. Vet. Med., 185: 105202. Search in Google Scholar

Viveiros S., Rodrigues M., Albuquerque D., Martins S.A.M., Cardoso S., Martins V.C. (2020). Multiple bacteria identification in the point-of-care: an old method serving a new approach. Sensors, 20: 3351. Search in Google Scholar

Wang L., Cao W., Wang X., Li P., Zhou J., Zhang G., Li X., Xing X. (2019). Biodegradable silver-loaded polycation modified nanodiamonds/polyurethane scaffold with improved antibacterial and mechanical properties for cartilage tissue repairing. J. Mater. Sci. Mater. Med., 30: 41. Search in Google Scholar

Woźniak A., Grześkowiak B.F., Babayevska N., Zalewski T., Drobna M., Woźniak-Budych M., Wiweger M., Słomski R., Jurga S. (2017 a). ZnO@Gd2O3 core/shell nanoparticles for biomedical applications: Physicochemical, in vitro and in vivo characterization. Mater. Sci. Eng. C, 80: 603–615. Search in Google Scholar

Woźniak A., Malankowska A., Nowaczyk G., Grześkowiak B.F., Tuśnio K., Słomski R., Zaleska-Medynska A., Jurga S. (2017 b). Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med., 28: 92. Search in Google Scholar

Wu D., Chang X., Tian J., Kang L., Wu Y., Liu J., Wu X., Huang Y., Gao B., Wang H., Qiu G., Wu Z. (2021). Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis. J. Nanobiotechnol., 19: 209. Search in Google Scholar

Ye E., Loh X.J. (2013). Polymeric hydrogels and nanoparticles: a merging and emerging field. Aust. J. Chem., 66: 997–1007. Search in Google Scholar

Yeri A., Gao D. (2011). Biosensing using nanoelectromechanical systems. Methods Mol. Biol., 726: 119–139. Search in Google Scholar

Yu L., Shang F., Chen X., Ni J., Yu L., Zhang M., Sun D., Xue T. (2018). The anti-biofilm effect of silver-nanoparticle-decorated quercetin nanoparticles on a multi-drug resistant Escherichia coli strain isolated from a dairy cow with mastitis. PeerJ., 6: e5711. Search in Google Scholar

Yu Z.Q., He K., Cao W.D., Aleem M.T., Yan R.F., Xu L.X., Song X.K., Li X.R. (2022). Nano vaccines for T. gondii ribosomal P2 protein with nanomaterials as a promising DNA vaccine against toxoplasmosis. Front. Immunol., 13: 839489. Search in Google Scholar

Yuan Y.G., Peng Q.L., Gurunathan S. (2017). Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int. J. Mol. Sci., 18: 569. Search in Google Scholar

Zhang L., Gu F.X., Chan J.M., Wang A.Z., Langer R.S., Farokhzad O.C. (2008). Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther., 83: 761–769. Search in Google Scholar

Articles recommandés par Trend MD