1. bookVolume 23 (2023): Edition 3 (July 2023)
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Biofloc technology and cockroach (Nauphoeta cinerea) insect meal-based diet for Nile tilapia: zootechnical performance, proximate composition and bacterial profile

Publié en ligne: 26 Jul 2023
Volume & Edition: Volume 23 (2023) - Edition 3 (July 2023)
Pages: 877 - 886
Reçu: 23 Dec 2022
Accepté: 04 Apr 2023
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais

Alfiko Y., Xie D., Astuti R.T., Wong J., Wang L. (2022). Insects as a feed ingredient for fish culture: Status and trends. Aquac. Fish., 7: 166–178. Search in Google Scholar

Amza N., Tamiru M. (2017). Insects as an option to conventional protein sources in animal feed: A review paper. GJSFR, 17: 12. Search in Google Scholar

Aniebo A.O., Erondu E.S., Owen O.J. (2009). Replacement of fish meal with maggot meal in African catfish (Clarias gariepinus) diets. Revista Cientifica UDO Agricola, 9: 666–671. Search in Google Scholar

AOAC (2000). Official methods of analysis, 16th ed. AOAC International, Washington, DC, USA. Search in Google Scholar

APHA (1992). Standard Methods for the Examination of Water and Wastewater. 18th ed. American Public Health Association/American Waterworks Association/Water Environment Federation, Washington, DC, USA. Search in Google Scholar

Avnimelech Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140–147. Search in Google Scholar

Avnimelech Y. (2015). Biofloc Technology – A Practical Guide Book, 3rd ed. The World Aquaculture Society, Baton Rouge: Louisiana, EUA. Search in Google Scholar

Azim M.E., Little D.C. (2008). The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283: 29–35. Search in Google Scholar

Barker D., Fitzpatrick M.P., Dierenfeld E.S. (1998). Nutrient composition of selected whole invertebrates. Zoo Biol., 17: 123–34. Search in Google Scholar

Barroso F.G., Sanchez-Muros M.J., Rincon M.A., Rodriguez-Rodriguez M., Fabrikov D., Morote E., Guil-Guerrero G.L. (2019). Production of n-3-rich insects by bioaccumulation of fishery waste. J. Food Compost. Anal., 82: 103237. Search in Google Scholar

Belforti M., Gai F., Lussiana C., Renna M., Malfatto V., Rotolo L., De Marco M., Dabbou S., Schiavone A., Zoccarato I., Gasco L. (2015). Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital. J. Anim. Sci., 14: 4170. Search in Google Scholar

Brol J., Pinho S.M., Sgnaulin T., Pereira K., Da R., Thomas M.C., Mello G.L. de, Miranda-Baeza A., Emerenciano M.G.C. (2017). Tecnologia de bioflocos (BFT) no desempenho zooteìcnico de tilaìpias: efeito da linhagem e densidades de estocagem. Arch. de Zootec., 66: 229–235. Search in Google Scholar

Crab R., Lambert A., Defoirdt T., Bossier P., Verstraete W. (2010). The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. J. Appl. Microbiol., 109: 1643–1649. Search in Google Scholar

Cummins V.C. Jr., Rawles S.D., Thompson K.R., Velasquez A., Kobayashi Y., Hager J., Webster C.D. (2017). Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 473: 337–344. Search in Google Scholar

Durigon E.G., Almeidab A.P.G., Jerônimo G.T., Baldisserotto B., Emerenciano M.G.C. (2019). Digestive enzymes and parasitology of Nile tilapia juveniles raised in brackish biofloc water and fed with different digestible protein and digestible energy levels. Aquaculture, 506: 35–41. Search in Google Scholar

Durigon E.G., Lazzari R., Uczay J., de Alcântara Lopes D.L., Jerônimo G.T., Sgnaulin T., Emerenciano M.G.C. (2020). Biofloc technology (BFT): adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquac. Fish., 5: 42–51. Search in Google Scholar

Ekasari J., Angela D., Waluyo S.H., Bachtiar T., Surawidjaja E.H., Bossier P., De Schryver P. (2014). The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426–427: 105–111. Search in Google Scholar

El-Sayed A.F.M. (1998). Total replacement of fishmeal with animal protein sources in Nile tilapia (Oreochromis niloticus) feeds. Aquac Res., 29: 275–280. Search in Google Scholar

El-Sayed A.F.M. (2006). Tilapia culture. CABI Publishing, Oxfordshire, UK, 277. Search in Google Scholar

Emerenciano M., Ballester E.L.C., Cavalli R.O., Wasielesky W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac. Rep., 43: 447–457. Search in Google Scholar

Emerenciano M., Gaxiola G., Cuzon G. (2013). Biofloc Technology (BFT): A review for aquaculture application and animal food industry. In: Biomass Now – Cultivation and Utilization, Matovic M.D. (ed.), InTech. Search in Google Scholar

Emerenciano M.G.C., Martiìnez-Coìrdova L.R., Martiìnez-Porchas M., Miranda-Baeza A. (2017). Biofloc technology (BFT): A tool for water quality management in aquaculture. Water Quality. InTech., DOI: 10.5772/66416. Search in Google Scholar

Espírito Santo C.M., Pinheiro I.C., Jesus G.F., Mouriño J.L., Vieira F., Seiffert W.Q. (2017). Soybean molasses as an organic carbon source in the farming of Litopenaeus vannamei (Boone, 1931) in a biofloc system. Aquac. Res., 48: 1827–1835. Search in Google Scholar

Ezewudo B.I., Monebi C.O., Ugwumba A.A.A. (2015). Production and utilization of Musca domestica maggots in the diet of Oreochromis niloticus (Linnaeus, 1758) fingerlings. Afr. J. Agric. Res., 10: 2363–2371. Search in Google Scholar

Fabrikov D., Barroso F,G., Sánchez-Muros M.J., Hidalgo M.C., Cardenete G., Tomás-Almenar C., Melenchón F., Guil-Guerrero J.L. (2021). Effect of feeding with insect meal diet on the fatty acid compositions of sea bream (Sparus aurata), tench (Tinca tinca) and rainbow trout (Oncorhynchus mykiss) fillets. Aquaculture, 545: 737170. Search in Google Scholar

FAO (2009). State of world fisheries and aquaculture 2008 (SOFIA). FAO Fisheries and Aquaculture Department, Rome. Search in Google Scholar

FAO (2015). Insects for food and feed. Rome. Available on <http://www.fao.org/forestry/edibleinsects/en/> Search in Google Scholar

FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en Search in Google Scholar

Finke M.D. (2007). Estimate of chitin in raw whole insects. Zoo Biol., 26: 105–115. Search in Google Scholar

Freccia A., Meurer E.S., Jerônimo G.T., Emerenciano M.G.C. (2016). Insect meal in diets of tilapia fingerlings. Zootec. Arch., 65: 541–547. Search in Google Scholar

Freccia A., Tubin J.S.B., Rombenso A.N., Emerenciano M.G.C. (2020). Insects in aquaculture nutrition: an emerging eco-friendly approach or commercial reality? Online First, IntechOpen, DOI: 10.5772/intechopen.90489. Search in Google Scholar

Furuya W.M. (2010). Tabelas brasileiras para a nutrição de tilápias. GFM. Toledo, 100. Search in Google Scholar

Gasco L., Henry M., Piccolo G., Marono S., Gai F., Renna M., Lussiana C., Antonopoulou E., Mola P., Chatzifotis S. (2016). Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed Sci. Technol., 220: 34–45. Search in Google Scholar

Giribet G., Edgecombe G.D. (2019). The phylogeny and evolutionary history of arthropods. Curr. Biol., 29: 592–602. Search in Google Scholar

Glencross B.D. (2009). Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev. Aquac., 1: 71–124. Search in Google Scholar

Gutieìrrez S.M., Dosta M.M., Partida A.H., Mejiìa J.C., Oca G.A.R.M. (2016). Effect of two carbon sources in microbial abundance in a biofloc culture system with Oreochromis niloticus (Linnaeus, 1758). Int. J. Fish. Aquat. Stud., 4: 421–427. Search in Google Scholar

Hardy R.W. (2010). Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal: review article. Aquac. Rep., 41: 770–776. Search in Google Scholar

Ido A., Hashizume A., Ohta T., Takahashi T., Miura C., Miura T. (2019). Replacement of fish meal by defatted yellow mealworm (Tenebrio molitor) larvae in diet improves growth performance and disease resistance in red seabream (Pargus major). Animals, 9: 100. Search in Google Scholar

Katya K., Borsra M.Z.S., Ganesan D., Kuppusamy G., Herriman M., Salter A., Ali S.A. (2017). Efficacy of insect larval meal to replace fish meal in juvenile barramundi, Lates calcarifer reared in freshwater. Int. Aquat. Res., 9: 303–312. Search in Google Scholar

Khan S., Naz S., Sultan A., Alhidary I.A., Abdelrahman M.M., Khan R.U., Khan N.A., Khan M.A., Ahmad S. (2016). Worm meal: a potential source of alternative protein in poultry feed. World’s Poult. Sci. J., 72: 93–102. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2022 a). Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquac. Int., 30: 383–397. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2022 b). Biofloc as a food source for banana shrimp (Fenneropenaeus merguiensis) postlarvae. N. Am. J. Aquac., 45: 469–479. Search in Google Scholar

Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021). The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a lowsalinity biofloc system. Ann. Anim. Sci., 21: 1435–1454. Search in Google Scholar

Khanjani M.H., Sharifinia M., Hajirezaee S. (2022 a). Recent progress towards the application of biofloc technology for tilapia farming. Aquaculture, 552: 738021. Search in Google Scholar

Khanjani M.H., Mohammadi A., Emerenciano M.G.C. (2022 b). Microorganisms in biofloc aquaculture system. Aquac. Rep., 26: 101300. Search in Google Scholar

Khanjani M.H., Eslami J., Ghaedi G., Sourinejad I. (2022 c). The effects of different stocking densities on nursery performance of banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition. Ann. Anim. Sci., 22: 1291–1299. Search in Google Scholar

Khanjani M.H., Torfi Mozanzade M., Fóes G.K. (2022 d). Aquamimicry system: a sutiable strategy for shrimp aquaculture. Ann. Anim. Sci., 22: 1201–1210. Search in Google Scholar

Khanjani M.H., Torfi Mozanzade M., Sharifinia M., Emerenciano M. G.C. (2023 a). Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562: 738757. Search in Google Scholar

Khanjani M.H., da Silva L.O.B., Foes G.K., Vieira F.D., Poli M., Santos M., Emerenciano M.G.C. (2023 b). Synbiotics and aquamimicry as alternative microbial-based approaches in intensive shrimp farming and biofloc: Novel disruptive techniques or complementary management tools? A scientific-based overview. Aquaculture, 567: 739273. Search in Google Scholar

Kroeckel S., Harjes A.G.E., Roth I., Katz H., Wuertz S., Susenbeth A., Schulz C. (2012). When a turbot catches a fly: Evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute – growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture, 364/365: 345–352. Search in Google Scholar

Kuo I.P., Liu C., Yang S., Liang S., Hu Y., Nan F. (2022). Effects of replacing fishmeal with defatted black soldier fly (Hermetia illucens Linnaeus) larvae meal in Japanese eel (Anguilla japonica) diet on growth performance, fillet texture, serum biochemical parameters, and intestinal histomorphology. Aquac. Nutr., 1866142. Search in Google Scholar

Lock E.R., ArisIwala T., Wagbo R. (2015). Insect larval meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postmolt. Aquac. Nutr., 22: 1–4. Search in Google Scholar

Long L., Yang J., Li Y., Guan C., Wu F. (2015). Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448: 135–141. Search in Google Scholar

Mabroke R.S., Zidan A.E.F.A., Tahoun A., Mola H.R.A., Abo-State H., Suloma A. (2021). Feeding frequency affect feed utilization of tilapia under biofloc system condition during nursery phase. Aquac. Rep., 19: 100625. Search in Google Scholar

Makkar H.P.S., Tran G., Henze V., Ankers P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol., 197: 1–33. Search in Google Scholar

Mansour C.R. (1998). Nutrient requirements of red tilapia fingerlings. MSc. Thesis, Faculty of Science. University of Alexandria, Alexandria, Egypt, 121 pp. Search in Google Scholar

Martínez-Córdova L.R., Emerenciano M., Miranda-Baeza A., Martínez-Porchas M. (2015). Microbial-based systems for aquaculture of fish and shrimp: an updated review. Rev. Aquac., 7: 131–148. Search in Google Scholar

Martínez-Córdova L.R., Martínez-Porchas M., Emerenciano M.G.C., Miranda-Baeza A. Gollas-Galván T. (2016). From microbes to fish the next revolution in food production. Crit. Rev. Biotechnol., 1–9. Search in Google Scholar

Martins G.B., Tarouco F., Rosa C.E., Robaldo R.B. (2017). The utilization of sodium bicarbonate, calcium carbonate or hydroxide in biofloc system: water quality, growth performance and oxidative stress of Nile tilapia (Oreochromis niloticus). Aquaculture, 468: 10–17. Search in Google Scholar

Mlček J., Adámková A., Adámek M., Borkovcová M., Bednářová M., Kouřimská L. (2018). Selected nutritional values of field cricket (Gryllus assimilis) and its possible use as a human food. Indian J. Tradit. Knowl., 17: 518–524. Search in Google Scholar

Monroy-Dosta M.D.C., Andrade D.L., Mejía J.C., Mejía G.C., Emerenciano M.G.C. (2013). Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia. Rev. Biol. Marin. Oceanogr., 48: 511–520. Search in Google Scholar

Ng W.K., Liew F.L., Ang L.P., Wong K.W. (2001). Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquac. Rep., 32: 273–280. Search in Google Scholar

Nwamba H.O., Ogunji J.O. (2012). Evaluating butterfly larvae (Bematistes macaria) meal as fishmeal substitute in diets of African catfish hybrid (Heteroclarias). Indian J. Soc. Nat. Sci., 1: 78–84. Search in Google Scholar

Ogunji J.O., Kloas W., Wirth M., Neumann N., Pietsch C. (2008). Effect of housefly maggot meal (magmeal) diets on the performance, concentration of plasma glucose, cortisol and blood characteristics of Oreochromis niloticus fingerlings. J. Anim. Physiol. Anim. Nutr., 92: 511–518. Search in Google Scholar

Oonincx D.G.A.B., Finke M.D. (2021). Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed, 7: 639–659. Search in Google Scholar

Oteri M., Chiofalo B., Maricchiolo G., Toscano G., Nalbone L., Lo Presti V., Di Rosa A.R. (2022). Black soldier fly larvae meal in the diet of gilthead sea bream: effect on chemical and microbiological quality of filets. Front. Nutr., 9: 896552. Search in Google Scholar

Piccolo G., Marono S., Gasco L., Iannaccone F., Bovera F., Nizza A. (2014). Use of Tenebrio molitor larvae meal in diets for gilthead sea bream Sparus aurata juveniles. Insects to Feed The World, The Netherlands, 14–17. Search in Google Scholar

Rust M.B. (2002). Nutritional physiology. In: Fish nutrition, Halver J.E., Hardy R.W. (eds). Academic Press, New York, pp. 368–446. Search in Google Scholar

Sánchez-Muros M.J., Barroso F.G., Manzano-Agugliaro F. (2014). Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod., 65: 16–27. Search in Google Scholar

Sánchez-Muros M.J., Haro C., Sanz A., Trenzado C.E., Villareces S., Barroso F.G. (2016). Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquacult. Nutr., 22: 943–955. Search in Google Scholar

Sgnaulin T., Durigon E.G., Pinho S.M., Jerônimo G.T., Lopes D.A.L., Emerenciano M.G.C. (2020). Nutrition of Genetically Improved Farmed Tilapia (GIFT) in biofloc technology system: Optimization of digestible protein and digestible energy levels during nursery phase. Aquaculture, 521: 734998. Search in Google Scholar

Shiau S., Yu Y. (1999). Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochromis niloticus×O. aureus. Aquaculture, 179: 439–446. Search in Google Scholar

Shin J., Lee K.J. (2021). Digestibility of insect meals for Pacific white shrimp (Litopenaeus vannamei) and their performance for growth, feed utilization and immune responses. Plos One, 16(11): e0260305. Search in Google Scholar

Silva D.J., Queiroz A.C. (2002). Análise de alimentos: métodos químicos e biológicos. 3 ed. Viçosa, Universidade Federal de Viçosa, 235. Search in Google Scholar

Smith J.L., Opekun A.R., Larkai E., Graham D.Y. (1989). Sensitivity of the esophageal mucosa to pH in gastroesophageal reflux disease. Gastroenterology, 96: 683–689. Search in Google Scholar

Sokal R., Rohlf J. (1995). Biometry, the principles and practice of statistics in biological research. W.H. Freeman, New York. Search in Google Scholar

Sousa A.A., Pinho S.M., Rombenso A.N., de Mello G.L., Emerenciano M.G.C. (2019). Pizzeria by-product: A complementary feed source for Nile tilapia (Oreochromis niloticus) raised in biofloc technology? Aquaculture, 501: 359–367. Search in Google Scholar

Souza D.M., Suita S.M., Romano L.A., Wasielesky W., Ballester E.L. (2014). Use of molasses as a carbon source during the nursery rearing of Farfantepenaeus brasiliensis (Latreille, 1817) in a Biofloc technology system. Aquac. Rep., 45: 270–277. Search in Google Scholar

Tran G., Heuzé, V., Makkar H. (2015). Insects in fish diets. Anim. Front., 5: 37–44. Search in Google Scholar

Tubin J.B., Paiano D., Hashimoto G.O., Furtado W.E., Martins M.L., Durigon E., Emerenciano M.G.C. (2020). Tenebrio molitor meal in diets for Nile tilapia juveniles reared in biofloc system. Aquaculture, 519: 734763. Search in Google Scholar

Veldkamp T., Van Duinkerken G., Van Huis A., Lakemond C.M.M., Ottevanger E., Bosch G., Van Boekel M.A.J.S. (2012). Insects as a sustainable feed ingredient in pig and poultry diets – a feasibility study. Rapport 638, Wageningen Livestock Research. Search in Google Scholar

Wasielesky W., Atwood H., Stokes A., Browdy C.L. (2006) Effect of natural production in a zero-exchange suspended microbial floc based super-intensive culture system for white shrimp (Litopenaeus vannamei). Aquaculture, 258: 396–403. Search in Google Scholar

Yu X.B., Shen Y.Y., Cui Q.M., Chen Y., Sun W., Huang X.Z. (2018). Silkworm (Bombyx mori) has the capability to accumulate C20 and C22 polyunsaturated fatty acids. Eur. J. Lipid Sci. Technol., 120: 1700268. Search in Google Scholar

Zar J.H. (1984). Biostatistical analysis. 2nd ed. New Jersey: Prentice Hall, Englewood Cliffs. Search in Google Scholar

Articles recommandés par Trend MD