[Albrecht A., Kandji S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ., 99: 15–27.]Search in Google Scholar
[Alalade O.A., Iyayi E.A. (2006). Chemical composition and the feeding value of Azolla Azolla pinnata meal for egg-type chicks. Int. J. Poultry Sci., 52: 137–141.]Search in Google Scholar
[Angelsen A., Kaimowitz D. (2010). Editors. Agricultural technologies and tropical deforestation. CABI Publishing, Wallingford Oxon U.K.]Search in Google Scholar
[Barrett C.B., Carter M.R., McPeak J., Mude A. (2008). Altering poverty dynamics with index insurance: Northern Kenya's. Madison, USA, University of Wisconsin.10.2139/ssrn.1845508]Search in Google Scholar
[Battini F., Agostini A., Boulamanti A.K., Giuntoli J., Amaducci S. (2014). Mitigating the environmental impacts of milk production via anaerobic digestion of manure: a case study of a dairy farm in the Po Valley. Sci. Total Environ., 481: 196–208.]Search in Google Scholar
[Beroya-Eitner M.A. (2015). Ecological vulnerability indicators. Ecol Indic., 60: 329–334.]Search in Google Scholar
[Conant R.T., Paustian K. (2002). Soil carbon sequestration in overgrazed grassland ecosystems. Global Biogeochemical Cycles., 16: 1143.]Search in Google Scholar
[Conway G. (2012). One Billion Hungry: Can we feed the world? Ithaca: Cornell University Press.10.7591/9780801466083]Search in Google Scholar
[Cassman K.G. (1999). Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci., 96: 5952–5959.]Search in Google Scholar
[DFID (2013). Sustainable development: A review of monitoring initiatives in agriculture.]Search in Google Scholar
[Dickie A., Streck C., Roe S., Zurek M., Haupt F., Dolginow A. (2014). Strategies for mitigating climate change in agriculture: Abridged report. Climate focus and California environmental associates, prifadred with the support of the climate and land use Alliance.]Search in Google Scholar
[Eagle A.J., Olander L.P., Henry L.R., Haugen-Kozyra K., Millar N., Robertson G.P. (2012). Greenhouse gas mitigation potential of agricultural land management in the United States: a synthesis of literature. Report N.I. R 10-04. 3th ed. Durham, USA, Nicholas Institute for Environmental Policy Solutions, Duke University.]Search in Google Scholar
[Fan S. (2020). Sustainable intensification of agriculture is key to feeding Africa in the 21st century. Front. Agr. Sci. Eng., 7: 366–370.]Search in Google Scholar
[FAO (2012). Livestock sector development for poverty reduction: an economic and policy perspective – Livestock's many virtues, by J. Otte, A. Costales, J. Dijkman, U. Pica-Ciamarra, T. Robinson, V. Ahuja, C. Ly and D. Roland-Holst. Rome, pp. 161.]Search in Google Scholar
[FAO (2013). Climate-Smart Agriculture–Sourcebook, The U.N. Food and Agriculture Organisation FAO: Rome, Italy, p. 557. Available online: http://www.fao.org/3/ai3325e.pdf accessed on 21 December 2020.]Search in Google Scholar
[FAO (2017). http://www.fao.org/climate-smart-agriculture-sourcebook/production-resources/module-b2-livestock/chapter-b2-3/en/.]Search in Google Scholar
[FAO (2009). State of food and agriculture - livestock in the balance. Rome.]Search in Google Scholar
[FAO (2012). The state of food insecurity in the world, Save and grow. A policymaker's guide to the sustainable intensification of smallholder crop production. FAO, Rome. 102–140. http://www.fao.org/ag/save-and-grow/.]Search in Google Scholar
[FAOSTAT (2013).]Search in Google Scholar
[Gerber P., Vellinga T., Opio C., Steinfeld H. (2011). Productivity gains and greenhouse gas intensity in dairy systems. Livestock Science., 139: 100–108.]Search in Google Scholar
[Gerber P.J.H., Steinfeld B., Henderson A., Mottet C., Opio J., Dijkman A., Falcucci G.T. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Rome: FAO. Available from http://www.fao.org/3/a-i3437e.pdf.]Search in Google Scholar
[Goulding K., Trewavas A., Giller K. (2011). Feeding the world: a contribution to the debate. World Agricult., 2: 32–38.]Search in Google Scholar
[Gill M.P., Smith P., Wilkinson J.M. (2009). Mitigating climate change: the role of domestic livestock. Animal, 43: 321–322.]Search in Google Scholar
[Hurst P., Termine P., Karl M. (2005). Agricultural workers and their contribution to sustainable agriculture and rural development. Rome, FAO.]Search in Google Scholar
[Herrero M., Thornton P.K. (2013). Livestock and global change: Emerging issues for sustainable food systems. Proc. Nat. Acad. Sci., 110: 20878–20881.]Search in Google Scholar
[Hoffman M.T., Vogel C. (2008). Climate change impacts on African rangelands. Rangelands, 30: 12–17.]Search in Google Scholar
[Hellmuth M.E., Moorhead A., Thomson. M., Williams J. (2007). Climate risk management in Africa: learning from practice. Climate and Society. No. 1. Palisades, NY, the International Research Institute for Climate and Society IRI. http://www.livestockglobalalliance.org/. The livestock sector is vital to global food security and health. accessed 13 January 2021.]Search in Google Scholar
[IPCC (2013). Summary for policymakers. In: Climate change: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Stocker T.F., Qin D., Plattner G.K., Tignor M.M.B., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (eds). Cambridge University Press, p. 154.]Search in Google Scholar
[Ivan D.T., Thuget T.Q. (1995). Use of Azolla in rice production in Vietnam. In: Nitrogen and Rice. International Rice Research Institute, Philippines, 395.]Search in Google Scholar
[Jabareen Y. (2013). Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities, 31: 220–229.]Search in Google Scholar
[Kissinger M., Rees W.E. (2010). An interregional ecological approach for modelling sustainability in a globalizing world – reviewing existing approaches and emerging directions. Ecol. Modelling, 22121: 2615–2623.]Search in Google Scholar
[Kumar S., Lakhran H., Meena R.S., Jangir K.C. (2017). Current needs of sustainable food and forage production to eliminate food and forage insecurity under climate change era. Forage Res., 43: 165–173.]Search in Google Scholar
[Kuyper T.W., Struik P.C. (2014). Global food security, rhetoric, and the sustainable intensification debate. Curr. Opin. Env. Sust., 8: 71–79.]Search in Google Scholar
[Kornegay J.L., Harwood R.R., Batie S.S., Bucks D., Flora C.B., Hanson J., Jackson-Smith D., Jury W., Meyer D., Reganold J.P., Schumacher A., Sehmsdorf H., Shennan C., Thrupp L.A., Willis P. (2010). Towards sustainable agriculture system in the 21st century. National Academics Press, Washington, DC, pp. 809–813.]Search in Google Scholar
[Maia A.G., Miyamoto B.C.B., Garcia J.R. (2018). Climate change and agriculture: Do environmental preservation and ecosystem services matter? Ecol. Econ., 152: 27–39.]Search in Google Scholar
[Mude A. (2009). Index-based livestock insurance for northern Kenya's arid and semi-arid lands: the Marsabit pilot. Project document. ILRI, Nairobi, Kenya. pp. 14.10.2139/ssrn.1844758]Search in Google Scholar
[Montes F., Meinen R., Dell C., Rotz A., Hristov A.N., Oh J., Waghorn G., Gerber P.J., Henderson B., Makkar H.P. (2013). Special topics – mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J. Anim. Sci., 91: 5070–5094.]Search in Google Scholar
[Moher D., Liberati A., Tetzla J., Altman D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med., 151: 264–269.]Search in Google Scholar
[Popp A., Lotze-Campen H., Bodirsky B. (2010). Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Global Environ. Change, 20: 451–462.]Search in Google Scholar
[Pretty J., Toulmin C., Williams S., (2011). Sustainable intensification in African agriculture. Int. J. Agricult. Sust., 9: 5–24.]Search in Google Scholar
[Rockström J., Steffen W., Noone K., Persson A., Chapin F.S., Lambin E., Lenton T.M., Scheffer M., Folke C., Schellnhuber H., Nykvist B., De Wit A., Hughes T., Van der Leeuw S., Rodhe H., Sörlin S., Snyder P. K., Costanza R., Svedin U., Falkenmark M., Karlberg L., Corell R.W., Fabry V.J., Hansen J., Walker B., Liverman D., Richardson K., Crutzen P., Foley J. (2009). Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc., 142: 32–39.]Search in Google Scholar
[Rolfe J. (2010). Economics of reducing grazing emissions from beef cattle in extensive grazing systems in Queensland. Rangeland J., 32: 197–204.]Search in Google Scholar
[Sahu G., Rout P.P., Mohapatra S., Das S.P., Pradhan P.P. (2020). Climate smart agriculture: a new approach for sustainable intensification. Curr. J. Appl. Sci. Technol., 39: 138–147.]Search in Google Scholar
[Seré C., Steinfeld H. (1996). World livestock production systems: current status, issues and trends. FAO Animal Production and Health Paper, Rome, 127.]Search in Google Scholar
[Steffen W., Richardson K., Rockström J., Cornell S. E., Fetzer I., Bennett E. M., Biggs R., Carpenter S. R., DeVries W., DeWit C. A., Folke C., Gerten D., Heinke J., Mace G. M., Persson L. M., Ramanathan V., Reyers B., Sörlin S. (2015). Planetary boundaries: guiding human development on a changing planet. Science, 347.10.1126/science.125985525592418]Search in Google Scholar
[Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O'Mara F., Rice C., Scholes B., Sirotenko O., Howden M., McAllister T., Pan G., Romanenkov V., Schneider U., Towprayoon S., Wattenbach M., Smith J. (2008). Greenhouse gas mitigation in agriculture. Philosoph. Transact. Royal Soc., 363: 789–813.]Search in Google Scholar
[The Montpellier Panel (2013). Sustainable Intensification: A New Paradigm for African Agriculture, London.]Search in Google Scholar
[Thornton P.K., Herrero M. (2010). The potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. PNAS, 107: 19667–19672.]Search in Google Scholar
[UNFCCC (2011). Reducing vulnerability to climate change, climate variability and extremes, land degradation and loss of biodiversity: environmental and developmental challenges and opportunities, United Nations Framework Convention on Climate Change UNFCCC: Rio de Janeiro, Brazil, New York, NY, USA, pp. 47.]Search in Google Scholar
[USDA United States Department of Agriculture (2013). Climate Change and Agriculture in the United States: Effects and Adaptation. USDA technical bulletin, Washington, DC.]Search in Google Scholar
[Wall E., Smit B. (2005). Climate change adaptation in light of sustainable agriculture. J. Sustain. Agric., 27: 113–123.]Search in Google Scholar
[Wall R., Morgan E. (2009). Veterinary parasitology and climate change. Vet. Parasitol., 163: 263.]Search in Google Scholar
[Williams A., Speller D. (2016). Reducing the environmental impact of poultry production. In: Sustainable poultry production in Europe, Burton E., Gatcliffe J., O'Neill H.M., Scholey D. (eds). Oxfordshire UK, CABI.]Search in Google Scholar
[Williams A.J., Chatterton G., Hateley A., Curwen J.E. (2015). A systems-life cycle assessment approach to modelling the impact of improvements in cattle health on greenhouse gas emissions. Adv. Anim. Biosci., 6: 29–31.]Search in Google Scholar
[Wollenberg E., Campbell B.M., Holmgren P., Seymour F., Sibanda L., Von Braun J. (2011). Actions needed to halt deforestation and promote climate smart agriculture. CGIAR Research Program on Climate Change. Agricult. Food Sec.]Search in Google Scholar
[Yadav J., Mandal M.K., Singh R., Baghel R.P.S. (2017). Performance analysis of Narmada Nidhi Poultry under backyard farming system in Mandla District of Madhya Pradesh. Indian J. Vet. Sci. Biotechnol, 13: 22–24.]Search in Google Scholar
[C2ES. (2019). What is climate resilience and why does it matter?. Climate Essentials, 4: 1–12.]Search in Google Scholar