[Abbas H.H. (2006). Acute toxicity of ammonia to common carp fingerlings (Cyprinus carpio) at different pH levels. Pak. J. Biol. Sci., 9: 2215–2221.]Search in Google Scholar
[Abdel-Latif H.M.R., Yilmaz E., Dawood M.A., Ringø E., Ahmadifar E., Yilmaz S. (2022). Shrimp vibriosis and possible control measures using probiotics, postbiotics, prebiotics, and synbiotics: A review. Aquaculture, 551: 737951.]Search in Google Scholar
[Abdel-Latif H.M.R., Chaklader M.R., Shukry M., Ahmed H.A., Khallaf M.A. (2023). A multispecies probiotic modulates growth, digestive enzymes, immunity, hepatic antioxidant activity, and disease resistance of Pangasianodon hypophthalmus fingerlings. Aquaculture, 563: 738948.]Search in Google Scholar
[Abedini A., Roumy V., Mahieux S., Biabiany M., Standaert-Vitse A., Rivière C., Sahpaz S., Bailleul F., Neut C., Hennebelle T. (2013). Rosmarinic acid and its methyl ester as antimicrobial components of the hydromethanolic extract of Hyptis atrorubens Poit. (Lamiaceae). Evid. Based Complement Alternat. Med., 604536: 1–11.]Search in Google Scholar
[Adomako-Bonsu A.G., Chan S.L., Pratten M., Fry J.R. (2017). Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physicochemical characteristics. Toxicol. In Vitro, 40: 248–255.]Search in Google Scholar
[Adorian T.J., Jamali H., Farsani H.G., Darvishi P., Hasanpour S., Bagheri T., Roozbehfar R. (2019). Effects of probiotic bacteria Bacillus on growth performance, digestive enzyme activity, and hematological parameters of Asian sea bass, Lates calcarifer (Bloch). Probiotics Antimicrob., 11: 248–255.]Search in Google Scholar
[Aguirre-Guzman G., Lara-Flores M., Sánchez-Martínez J.G., Campa-Córdova A.I., Luna-González A. (2012). The use of probiotics in aquatic organisms: A review. Afr. J. Microbiol. Res., 6: 4845–4857.]Search in Google Scholar
[Ahmadifar E., Yousefi M., Karimi M., Fadaei Raieni R., Dadar M., Yilmaz S., Dawood M.A.O., Abdel-Latif H.M.R. (2021). Benefits of dietary polyphenols and polyphenol-rich additives to aquatic animal health: an overview. Rev. Fish. Sci. Aquac., 29: 478–511.]Search in Google Scholar
[Alagawany M., Abd El-Hack M.E., Farag M.R., Gopi M., Karthik K., Malik Y.S., Dhama K. (2017). Rosmarinic acid: modes of action, medicinal values and health benefits. Anim. Health Res. Rev., 18: 167–176.]Search in Google Scholar
[Assan D., Kuebutornye F.K.A., Hlordzi V., Chen H., Mraz J., Mustapha U.F., Abarike, E.D. (2022). Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini review. Comp. Biochem. Physiol. B, Biochem., 257: 110653.]Search in Google Scholar
[Balcázar J. L., Vendrell D., De Blas I., Ruiz-Zarzuela I., Gironés O., Muzquiz J. L. (2006). Immune modulation by probiotic strains: quantification of phagocytosis of Aeromonas salmonicida by leukocytes isolated from gut of rainbow trout (Oncorhynchus mykiss) using a radiolabelling assay. Comp. Immunol. Microbiol. Infect. Dis., 29: 335–343.]Search in Google Scholar
[Banaee M., Sureda A., Mirvaghefi A.R., Rafei G.R. (2011). Effects of long-term silymarin oral supplementation on the blood biochemical profile of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem., 37: 885–896.]Search in Google Scholar
[Banerjee G., Ray A.K. (2017). The advancement of probiotics research and its application in fish farming industries. Res. Vet. Sci., 115: 66–77.]Search in Google Scholar
[Cai X., Yang F., Zhu L., Xia Y., Wu Q., Xue H., Lu Y. (2019). Rosmarinic acid, the main effective constituent of Orthosiphon stamineus, inhibits intestinal epithelial apoptosis via regulation of the Nrf2 pathway in mice. Molecules, 24: 3027.]Search in Google Scholar
[Chen Q.Q., Liu W.B., Zhou M., Dai Y.J., Xu C., Tian H. Y., Xu W.N. (2016). Effects of berberine on the growth and immune performance in response to ammonia stress and high-fat dietary in blunt snout bream Megalobrama amblycephala. Fish Shellfish Immunol., 55: 165–172.]Search in Google Scholar
[Cheng C.H., Yang F.F., Ling R.Z., Liao S.A., Miao Y.T., Ye C.X., Wang A.L. (2015). Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Aquat. Toxicol., 164: 61–71.]Search in Google Scholar
[Crab R., Avnimelech Y., Defoirdt T., Bossier P., Verstraete W. (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270: 1–14.]Search in Google Scholar
[Dawood M.A., Gewaily M.S., Monier M.N., Younis E.M., Van Doan H., Sewilam H. (2021). The regulatory roles of yucca extract on the growth rate, hepato-renal function, histopathological alterations, and immune-related genes in common carp exposed with acute ammonia stress. Aquaculture, 534: 736287.]Search in Google Scholar
[Dawood M.A., Koshio S., Ishikawa M., Yokoyama S., El Basuini M.F., Hossain M.S., Nhu T.H., Dossou S., Moss A.S. (2016). Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol., 49: 275–285.]Search in Google Scholar
[De B., Meena D.K., Behera B.K., Das P., Das Mohapatra P.K., Sharma A.P. (2014). Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. Fish Physiol. Biochem., 40: 921–971.]Search in Google Scholar
[Denev S., Beev G., Staykov Y., Moutafchieva R. (2009). Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. Int. Aquat. Res., 1: 1–29.]Search in Google Scholar
[Ebrahimi E., Haghjou M., Nematollahi A., Goudarzian F. (2020). Effects of rosemary essential oil on growth performance and hematological parameters of young great sturgeon (Huso huso). Aquaculture, 521: 734909.]Search in Google Scholar
[Ellis A.E. (1990). Lysozyme assays. Techniques in Fish Immunology, 1: 101–103.]Search in Google Scholar
[El-Saadony M.T., Alagawany M., Patra A.K., Kar I., Tiwari R., Dawood M.A., Dhama K., Abdel-Latif H.M.R. (2021). The functionality of probiotics in aquaculture: an overview. Fish Shellfish Immunol., 117: 36–52.]Search in Google Scholar
[Elufioye T.O., Habtemariam S. (2019). Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action. Biomed. Pharmacother., 112: 108600.]Search in Google Scholar
[Elumalai P., Kurian A., Lakshmi S., Faggio C., Esteban M.A., Ringø E. (2020). Herbal immunomodulators in aquaculture. Rev. Fish. Sci. Aquac., 29: 33–57.]Search in Google Scholar
[Esmaeili M., Kenari A.A., Rombenso A. (2017). Immunohematological status under acute ammonia stress of juvenile rainbow trout (Oncorhynchus mykiss Walbaum, 1792) fed garlic (Allium sativum) powder-supplemented meat and bone meal-based feeds. Comp. Clin. Path., 26: 853–866.]Search in Google Scholar
[Ezema C. (2013). Probiotics in animal production: A review. J. Vet. Med. Anim. Health, 5: 308–316.]Search in Google Scholar
[Fasolo J.M., Vizuete A.F.K., Rico E.P., Rambo R.B., Toson N.S., Santos E., de Oliveira D.L., Gonçalves C.A.S., Schapoval E.E.S., Heriques A.T. (2021). Anti-inflammatory effect of rosmarinic acid isolated from Blechnum brasiliense in adult zebrafish brain. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol., 239: 108874.]Search in Google Scholar
[Francis-Floyd R., Watson C., Petty D., Pouder D.B. (2009). Ammonia in aquatic systems. EDIS, 6: 1–5.]Search in Google Scholar
[Galina J., Yin G., Ardo L., Jeney Z. (2009). The use of immunostimulating herbs in fish. An overview of research. Fish Physiol. Biochem., 35: 669–676.]Search in Google Scholar
[García-Carreño F.L. (1992). Protease inhibition in theory and practice. Biotech. Education, 3: 145–50.]Search in Google Scholar
[Ghelichpour M., Mirghaed A.T., Hoseini S.M., Jimenez A. P. (2020). Plasma antioxidant and hepatic enzymes activity, thyroid hormones alterations and health status of liver tissue in common carp (Cyprinus carpio) exposed to lufenuron. Aquaculture, 516: 734634.]Search in Google Scholar
[Gioacchini G., Giorgini E., Olivotto I., Maradonna F., Merrifield D. L., Carnevali O. (2014). The influence of probiotics on zebrafish Danio rerio innate immunity and hepatic stress. Zebra fish, 11: 98–106.]Search in Google Scholar
[Gómez G.D., Balcázar, J.L. (2008). A review on the interactions between gut microbiota and innate immunity of fish. FEMS Microbiol. Immunol., 52: 145–154.]Search in Google Scholar
[Gopi N., Iswarya A., Vijayakumar S., Jayanthi S., Nor S.A.M., Velusamy P., Vaseeharan B. (2022). Protective effects of dietary supplementation of probiotic Bacillus licheniformis Dahb1 against ammonia induced immunotoxicity and oxidative stress in Oreochromis mossambicus. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol., 259: 109379.]Search in Google Scholar
[Goth L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta, 196: 143–151.]Search in Google Scholar
[Hajirezaee S., Khanjani M.H. (2021). Evaluation of dietary inclusion of Bunium persicum, Bunium persicum essential oil on growth, immune components, immune-related gene expressions and resistance to Aeromonas hydrophila, in rainbow trout, Oncorhynchus Mykiss. Aquac. Res., 52: 4711–4723.]Search in Google Scholar
[Hamed H.S., El-Sayed Y.S. (2019). Antioxidant activities of Moringa oleifera leaf extract against pendimethalin-induced oxidative stress and genotoxicity in Nile tilapia, Oreochromis niloticus (L.). Fish Physiol. Biochem., 45: 71–82.]Search in Google Scholar
[Hargreaves J.A., Tucker C.S. (2004). Managing ammonia in fish ponds. Stoneville: Southern Regional Aquaculture Center. SRAC Publication No. 4603.]Search in Google Scholar
[Harikrishnan R., Balasundaram C., Heo M. (2010). Supplementation diet containing probiotics, herbal and azadirachtin on hematological and biochemical changes in Cirrhina mrigala against Aphanomyces invadans. Fish. Aquac J., 4: 1–11.]Search in Google Scholar
[Heshmati J., Farsi F., Shokri F., Rezaeinejad M., Almasi-Hashiani A., Vesali S., Sepidarkish M. (2018). A systematic review and meta-analysis of the probiotics and synbiotics effects on oxidative stress. J. Funct. Foods, 46: 66–84.]Search in Google Scholar
[Hooshyar Y., Abedian Kenari A., Paknejad H., Gandomi H. (2020). Effects of Lactobacillus rhamnosus ATCC 7469 on different parameters related to health status of rainbow trout (Oncorhynchus mykiss) and the protection against Yersinia ruckeri. Probiotics Antimicrob., 12: 1370–1384.]Search in Google Scholar
[Hoseini S.M., Yousefi M., Hoseinifar S.H., Van Doan H. (2019). Antioxidant, enzymatic and hematological responses of common carp (Cyprinus carpio) fed with myrcene- or menthol-supplemented diets and exposed to ambient ammonia. Aquaculture, 506: 246–255.]Search in Google Scholar
[Hoseini S.M., Gharavi B., Mirghaed A.T., Hoseinifar S.H., Van Doan H. (2021). Effects of dietary phytol supplementation on growth performance, immunological parameters, antioxidant and stress responses to ammonia exposure in common carp, Cyprinus carpio (Linnaeus, 1758). Aquaculture, 545: 737151.]Search in Google Scholar
[Hoseinifar S.H., Yousefi S., Van Doan H., Ashouri G., Gioacchini G., Maradonna F., Carnevali O. (2020). Oxidative stress and antioxidant defense in fish: the implications of probiotic, prebiotic, and synbiotics. Rev. Fish. Sci. Aquac., 29: 198–217.]Search in Google Scholar
[Hoseinifar S.H., Zoheiri F., Dadar M., Rufchaei R., Ringø E. (2016). Dietary galactooligosaccharide elicits positive effects on non-specific immune parameters and growth performance in Caspian white fish (Rutilus frisii kutum) fry. Fish Shellfish Immunol., 56: 467–472.]Search in Google Scholar
[Hussain T., Gupta S., Mukhtar H. (2003). Cyclooxygenase-2 and prostate carcinogenesis. Cancer Lett., 191:125–135.]Search in Google Scholar
[Javed M., Munir S., Iqbal N., Xiong S., Liu Y. (2021). Influence of rosmarinic acid on biochemical and structural properties of silver carp myofibrillar protein under methemoglobin catalyzed docosahexaenoic acid oxidative stress. J. Aquat. Food Prod. Technol., 30: 1048–1061.]Search in Google Scholar
[Jia R., Gu Z., He Q., Du J., Cao L., Jeney G., Xu P., Yin G. (2019). Anti-oxidative, anti-inflammatory and hepatoprotective effects of Radix Bupleuri extract against oxidative damage in tilapia (Oreochromis niloticus) via Nrf2 and TLRs signaling pathway. Fish Shellfish Immunol., 93: 395–405.]Search in Google Scholar
[Karataş T., Korkmaz F., Karataş A., Yildirim S. (2020). Effects of Rosemary (Rosmarinus officinalis) extract on growth, blood biochemistry, immunity, antioxidant, digestive enzymes and liver histopathology of rainbow trout, Oncorhynchus mykiss. Aquac. Nutr., 26: 1533–1541.]Search in Google Scholar
[Khanjani M.H., Sharifinia M., Ghaedi, G. (2022 a). β-glucan as a promising food additive and immunostimulant in aquaculture industry. Ann. Anim. Sci., 22: 817–827.10.2478/aoas-2021-0083]Search in Google Scholar
[Khanjani M.H., Ghaedi G., Sharifinia M. (2022 b). Effects of diets containing β-glucan on survival, growth performance, hematological, immunity and biochemical parameters of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquac. Res., 53: 1842–1850.10.1111/are.15712]Search in Google Scholar
[Kuebutornye F.K., Abarike E.D., Lu Y., Hlordzi V., Sakyi M.E., Afriyie G., Wang, Z., Li Y., Xie C.X. (2020). Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiol. Biochem., 46: 819–841.]Search in Google Scholar
[Kullisaar T., Songisepp E., Zilmer M. (2012). Probiotics and oxidative stress. In: Oxidative stress – Environmental induction and dietary antioxidants, Lushchak V. (ed.). pp. 203–222.]Search in Google Scholar
[Lamaison J.L., Petitjean-Freytet C., Carnat A. (1991). Medicinal Lamiaceae with antioxidant properties, a potential source of rosmarinic acid. Pharm. Acta Helv., 66: 185–188.]Search in Google Scholar
[Liang Y., Wu Y., Li J., Peng R., Jiang M., Jiang X., Chen S., Lin J. (2022). Effects of ammonia toxicity on the histopathology, detoxification, oxidative stress, and immune response of the cuttlefish Sepia pharaonis and the mitigation of γ-aminobutyric acid. Ecotoxicol. Environ. Saf., 232: 113256.]Search in Google Scholar
[Lin M.Y., Yen C.L. (1999). Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem., 47:1460–1466.]Search in Google Scholar
[Luo C., Zou L., Sun H., Peng J., Gao C., Bao L., Ji R., Jin Y., Sun S. (2020). A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Front. Pharmacol., 11, 153.10.3389/fphar.2020.00153705918632184728]Search in Google Scholar
[Madreseh S., Ghaisari H.R., Hosseinzadeh S. (2019). Effect of lyophilized, encapsulated Lactobacillus fermentum and lactulose feeding on growth performance, heavy metals, and trace element residues in rainbow trout (Oncorhynchus mykiss) tissues. Probiotics Antimicrob., 11: 1257–1263.]Search in Google Scholar
[Magouz F.I., Mahmoud S.A., El-Morsy R.A., Paray B.A., Soliman A.A., Zaineldin A.I., Dawood M.A. (2021). Dietary menthol essential oil enhanced the growth performance, digestive enzyme activity, immune-related genes, and resistance against acute ammonia exposure in Nile tilapia (Oreochromis niloticus). Aquaculture, 530: 735944.]Search in Google Scholar
[Magouz F.I., Mahmoud S.A., El-Morsy R.A., Paray B.A., Soliman A.A., Zaineldin A.I., Dawood M.A. (2021). Dietary menthol essential oil enhanced the growth performance, digestive enzyme activity, immune-related genes, and resistance against acute ammonia exposure in Nile tilapia (Oreochromis niloticus). Aquaculture, 530: 735944.]Search in Google Scholar
[Merrifield D.L., Dimitroglou A., Bradley G., Baker R.T.M., Davies S.J. (2010). Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) I. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria. Aquac. Nutr., 16: 504–510.]Search in Google Scholar
[Mindus C., Van Staaveren N., Fuchs D., Gostner J.M., Kjaer J.B., Kunze W., Mian M.F., Shoveller A.K., Forsythe P., Harlander-Matauschek A. (2021). L. rhamnosus improves the immune response and tryptophan catabolism in laying hen pullets. Sci. Rep., 11: 1–15.]Search in Google Scholar
[Mirghaed A.T., Fayaz S., Hoseini S.M. (2019). Effects of dietary 1, 8-cineole supplementation on serum stress and antioxidant markers of common carp (Cyprinus carpio) acutely exposed to ambient ammonia. Aquaculture, 509: 8–15.]Search in Google Scholar
[Mohapatra S., Chakraborty T., Kumar V., DeBoeck G., Mohanta K.N. (2013). Aquaculture and stress management: a review of probiotic intervention. J. Anim. Physiol. Anim. Nutr., 97: 405–430.]Search in Google Scholar
[Mushtaq N., Schmatz R., Ahmed M., Pereira L.B., da Costa P., Reichert K.P., Dalenogare D., Pelinson L.P., Vieira J.M., Stefanello N., de Oliveira L.S., Mulinacci N., Bellumori M., Morsch V.M., Schetinger M.R. (2015). Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats. J. Physiol. Biochem., 71: 743–751.]Search in Google Scholar
[Nadeem M., Imran M., Aslam Gondal T., Imran A., Shahbaz M., Muhammad Amir R., Sajid M.W., Qaisrani T.B., Atif M., Hussain G., Salehi B., Ostrander E.A., Martorell M., Sharifi-Rad J., Cho W.C., Martins N. (2019). Therapeutic potential of rosmarinic acid: A comprehensive review. Appl. Sci., 9: 3139.]Search in Google Scholar
[Nayak S.K. (2010). Probiotics and immunity: a fish perspective. Fish Shellfish Immunol., 29: 2–14.]Search in Google Scholar
[Nikoskelainen S., Ouwehand A.C., Bylund G., Salminen S., Lilius E.M. (2003). Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol., 15: 443–452.]Search in Google Scholar
[Noor S., Mohammad T., Rub M.A., Raza A., Azum N., Yadav D.K., Hassan M.I., Asiri A.M. (2022). Biomedical features and therapeutic potential of rosmarinic acid. Arch. Pharm. Res., 45: 205–228.]Search in Google Scholar
[Pirarat N., Kobayashi T., Katagiri T., Maita M., Endo M. (2006). Protective effects and mechanisms of a probiotic bacterium Lactobacillus rhamnosus against experimental Edwardsiella tarda infection in tilapia (Oreochromis niloticus). Vet. Immunol. Immunopathol, 113: 339–347.]Search in Google Scholar
[Pirarat N., Pinpimai K., Endo M., Katagiri T., Ponpornpisit A., Chansue N., Maita M. (2011). Modulation of intestinal morphology and immunity in Nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res. Vet. Sci., 91: e92–e97.]Search in Google Scholar
[Pulkkinen K., Suomalainen L.R., Read A.F., Ebert D., Rintamäki P., Valtonen E.T. (2010). Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proc. R. Soc. B: Biol. Sci., 277: 593–600.]Search in Google Scholar
[Rafieepour A., Hajirezaee S., Rahimi R. (2019). Dietary oregano extract (Origanum vulgare L.) enhances the antioxidant defence in rainbow trout, Oncorhynchus mykiss against toxicity induced by organophosphorus pesticide, diazinon. Toxin Rev., 39: 397–407.]Search in Google Scholar
[Rajabiesterabadi H., Ghelichi A., Jorjani S., Hoseini S.M., Akrami R. (2020). Dietary olive (Olea europaea) leaf extract suppresses oxidative stress and modulates intestinal expression of antioxidant- and tight junction-related genes in common carp (Cyprinus carpio). Aquaculture, 520: 734676.]Search in Google Scholar
[Rajabiesterabadi H., Yousefi M., Hoseini S.M. (2020). Enhanced haematological and immune responses in common carp Cyprinus carpio fed with olive leaf extract-supplemented diets and subjected to ambient ammonia. Aquac. Nutr., 26: 763–771.]Search in Google Scholar
[Rama S., Manjabhat S.N. (2014). Protective effect of shrimp carotenoids against ammonia stress in common carp, Cyprinus carpio. Ecotoxicol. Environ. Saf., 107: 207–213.]Search in Google Scholar
[Randall D.J., Tsui T.K.N. (2002). Ammonia toxicity in fish. Mar. Pollut. Bull., 45: 17–23. Romero J., Feijoó C.G., Navarrete P. (2012). Antibiotics in aquaculture–use, abuse and alternatives. Health Environ. Aquacult., 159: 159–198.]Search in Google Scholar
[Rong H., Liang Y., Niu Y. (2018). Rosmarinic acid attenuates β-amyloid-induced oxidative stress via Akt/GSK-3β/Fyn-mediated Nrf2 activation in PC12 cells. Free Radic. Biol. Med., 120: 114–123.]Search in Google Scholar
[Ross N.W., Firth K.J., Wang A., Burka J.F., Johnson S.C. (2000). Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Dis. Aquat. Org., 41: 43–51.]Search in Google Scholar
[Sadeghi N., Bahadori R., Ojagh S.M., Salamroodi E. (2020). Effect of dietary Lactobacillus rhamnosus on blood biochemical indices and some digestive enzymes activity in rainbow trout (Oncorhynchus mykiss) fed with aflatoxin B1 infected diet. J. Anim. Environ., 12: 151–160.]Search in Google Scholar
[Salama N.A., Ghanim N.F., Abada A.E., Sherif A.H. (2016). Effect of un-ionized ammonia (NH3) on Oreochromis niloticus physiological status with a probiotic treatment trial. Int. J. Sci. Res., 5: 1907–1915.]Search in Google Scholar
[Sewaka M., Trullas C., Chotiko A., Rodkhum C., Chansue N., Boonanuntanasarn S., Pirarat N. (2019). Efficacy of synbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia (Oreochromis spp.). Fish Shellfish Immunol., 86: 260–268.]Search in Google Scholar
[Shakya A.K. (2016). Medicinal plants: Future source of new drugs. International Journal of Herbal Medicine, 4: 59–64.]Search in Google Scholar
[Shakya S.R. (2017). Effect of herbs and herbal products feed supplements on growth in fishes: A review. Nepal J. Biotechnol., 5: 58–63.]Search in Google Scholar
[Shukry M., Abd El-Kader M.F., Hendam B.M., Dawood M.A., Farrag F.A., Aboelenin S.M., Soliman M.M., Abdel-Latif H.M. (2021). Dietary Aspergillus oryzae modulates serum biochemical indices, immune responses, oxidative stress, and transcription of HSP70 and cytokine genes in Nile tilapia exposed to salinity stress. Animals, 11: 1621.]Search in Google Scholar
[Siwicki A.K., Anderson D.P., Rumsey G.L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol., 41: 125–139.]Search in Google Scholar
[Taheri Mirghaed A., Fayaz S., Hoseini S.M. (2019). Dietary 1, 8-cinoele affects serum enzymatic activities and immunological characteristics in common carp (Cyprinus carpio) exposed to ambient ammonia. Aquac. Res., 50: 146–153.]Search in Google Scholar
[Takanashi S., Miura A., Abe K., Uchida J., Itoi S., Sugita H. (2014). Variations in bile tolerance among Lactococcus lactis strains derived from different sources. Folia Microbiol., 59: 289–293.]Search in Google Scholar
[Tungmunnithum D., Thongboonyou A., Pholboon A., Yangsabai A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5: 93.]Search in Google Scholar
[Turan F., Yiğitarslan D. (2016). The effects of rosemary extract (Rosemaria officinalis) as a feed additive on growth and whole-body composition of the African catfish (Clarias gariepinus (Burchell, 1822). NESciences, 1: 49–55.]Search in Google Scholar
[Vijayan M.M., Aluru N., Leatherland J.F. (2010). Stress response and the role of cortisol. Fish Diseases and Disorders, 2: 182–201.]Search in Google Scholar
[Wagner G.N., Singer T.D., Scott McKinley R. (2003). The ability of clove oil and MS-222 to minimize handling stress in rainbow trout (Oncorhynchus mykiss Walbaum). Aquac. Res., 34: 1139–1146.]Search in Google Scholar
[Wang S., Li X., Zhang M., Jiang H., Wang R., Qian Y., Li M. (2021). Ammonia stress disrupts intestinal microbial community and amino acid metabolism of juvenile yellow catfish (Pelteobagrus fulvidraco). Ecotoxicol. Environ. Saf., 227: 112932.]Search in Google Scholar
[Westerik N., Kort R., Sybesma W., Reid G. (2018). Lactobacillus rhamnosus probiotic food as a tool for empowerment across the value chain in Africa. Front. Microbiol., 9: 1501.]Search in Google Scholar
[Xia Y., Lu M., Chen G., Cao J., Gao F., Wang M., Liu Z., Zhang D., Zhu H., Yi M. (2018). Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol., 76: 368–379.]Search in Google Scholar
[Yang H.L., Liu Z.Y., Jian J.T., Ye J.D., Sun Y.Z. (2021). Host-associated Bacillus siamensis and Lactococcus petauri improved growth performance, innate immunity, antioxidant activity and ammonia tolerance in juvenile Japanese seabass (Lateolabrax japonicus). Aquac. Nutr., 27: 2739–2748.]Search in Google Scholar
[Yano T. (1992). Assays of hemolytic complement activity. Techniques Fish Immunol., 131–141.]Search in Google Scholar
[Yilmaz S., Yilmaz E., Dawood M.A., Ringø E., Ahmadifar E., Abdel-Latif H.M.R. (2022). Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: A review. Aquaculture, 547: 737514.]Search in Google Scholar
[Yousefi M., Hoseini S.M., Vatnikov Y.A., Kulikov E.V., Drukovsky S.G. (2019). Rosemary leaf powder improved growth performance, immune and antioxidant parameters, and crowding stress responses in common carp (Cyprinus carpio) fingerlings. Aquaculture, 505: 473–480.]Search in Google Scholar
[Zhang M., Li M., Wang R., Qian Y. (2018). Effects of acute ammonia toxicity on oxidative stress, immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous taurine. Fish Shellfish Immunol., 79: 313–320.]Search in Google Scholar
[Zhao Y., Han Y., Wang Z., Chen T., Qian H., He J., Li J., Han B., Wang T. (2020). Rosmarinic acid protects against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in zebrafish embryos. Toxicol. in Vitro, 65: 104823.]Search in Google Scholar
[Zorriehzahra M.J., Delshad S.T., Adel M., Tiwari R., Karthik K., Dhama K., Lazado C.C. (2016). Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet. Q., 36: 228–241.]Search in Google Scholar
[Zuo Z., Wang S., Wang Q., Wang D., Wu Q., Xie S., Zou J. (2022). Effects of partial replacement of dietary flour meal with seaweed polysaccharides on the resistance to ammonia stress in the intestine of hybrid snakehead (Channa maculatus♀× Channa argus♂). Fish Shellfish Immunol., 127: 271–279.]Search in Google Scholar