Détails du magazine
Première parution
25 Nov 2011
4 fois par an
Accès libre

A mini-review on plant-derived phenolic compounds with particular emphasis on their possible applications and beneficial uses in aquaculture

Publié en ligne: 27 Feb 2023
Volume & Edition: AHEAD OF PRINT
Pages: -
Reçu: 29 Oct 2022
Accepté: 09 Jan 2023
Détails du magazine
Première parution
25 Nov 2011
4 fois par an

Abd El-Naby A.S., Al-Sagheer A.A., Negm S. S., Naiel M.A.E. (2020). Dietary combination of chitosan nanoparticle and thymol affects feed utilization, digestive enzymes, antioxidant status, and intestinal morphology of Oreochromis niloticus. Aquaculture, 515: 734577. Search in Google Scholar

Abdel-Latif H.M.R., Abdel-Daim M.M., Shukry M., Nowosad J., Kucharczyk D. (2022 a). Benefits and applications of Moringa oleifera as a plant protein source in Aquafeed: A review. Aquaculture, 547: 737369.10.1016/j.aquaculture.2021.737369 Search in Google Scholar

Abdel-Latif H.M.R., Ahmed H.A., Shukry M., Chaklader M.R., Saleh R.M., Khallaf M.A. (2022 b). Astragalus membranaceus extract (AME) enhances growth, digestive enzymes, antioxidant capacity, and immunity of Pangasianodon hypophthalmus juveniles. Fishes, 7: 319.10.3390/fishes7060319 Search in Google Scholar

Abdel-Latif H.M.R., Dawood M.A.O., Menanteau-Ledouble S., El-Matbouli M. (2020). The nature and consequences of co-infections in tilapia: A review. J. Fish Dis., 43: 651–664. Search in Google Scholar

Abdel-Latif H.M.R., Hendam B.M., Nofal M.I., El-Son M.A.M. (2021). Ginkgo biloba leaf extract improves growth, intestinal histomorphometry, immunity, antioxidant status and modulates transcription of cytokine genes in hapa-reared Oreochromis niloticus. Fish Shellfish Immunol., 117: 339–349. Search in Google Scholar

Abdel-Latif H.M.R., Khafaga A.F. (2020). Natural co-infection of cultured Nile tilapia Oreochromis niloticus with Aeromonas hydrophila and Gyrodactylus cichlidarum experiencing high mortality during summer. Aquac. Res., 51: 1880–1892. Search in Google Scholar

Abdel-Latif H.M.R., Shukry M., Noreldin A.E., Ahmed H.A., El-Bahrawy A., Ghetas H.A., Khalifa E. (2023). Milk thistle (Silybum marianum) extract improves growth, immunity, serum biochemical indices, antioxidant state, hepatic histoarchitecture, and intestinal histomorphometry of striped catfish, Pangasianodon hypophthalmus. Aquaculture, 562: 738761. Search in Google Scholar

Ahmadifar E., Yousefi M., Karimi M., Fadaei Raieni R., Dadar M., Yilmaz S., . . . Abdel-Latif H.M.R. (2021). Benefits of dietary polyphenols and polyphenol-rich additives to aquatic animal health: An overview. Rev. Fish. Sci. Aquac., 29: 478–511. Search in Google Scholar

Ahne W. (1994). Viral infections of aquatic animals with special reference to Asian aquaculture. Annu. Rev. Fish Dis., 4: 375–388. Search in Google Scholar

Alderman D.J., Hastings T.S. (1998). Antibiotic use in aquaculture: development of antibiotic resistance – potential for consumer health risks. Int. J. Food Sci. Technol., 33: 139–155. Search in Google Scholar

Aldulaimi O.A. (2017). General overview of phenolics from plant to laboratory, good antibacterials or not. Pharmacogn. Rev., 11: 123–127. Search in Google Scholar

Assefa A., Abunna F. (2018). Maintenance of fish health in Aquaculture: Review of epidemiological approaches for prevention and control of infectious disease of fish. Vet. Med. Int., 5432497.10.1155/2018/5432497584636129682272 Search in Google Scholar

Austin B. (2011). Taxonomy of bacterial fish pathogens. Vet. Res., 42: 20. Search in Google Scholar

Ayyat M.S., Ayyat A.M.N., Naiel M.A.E., Al-Sagheer A.A. (2020). Reversal effects of some safe dietary supplements on lead contaminated diet induced impaired growth and associated parameters in Nile tilapia. Aquaculture, 515: 734580. Search in Google Scholar

Baiano J.C., Barnes, A.C. (2009). Towards control of Streptococcus iniae. Emerg. Infect. Dis., 15: 1891–1896. Search in Google Scholar

Balmer B.F., Getchell R.G., Powers R.L., Lee J., Zhang T., Jung M.E., . . . Aguilar H.C. (2018). Broad-spectrum antiviral JL122 blocks infection and inhibits transmission of aquatic rhabdoviruses. Virology, 525: 143–149. Search in Google Scholar

Balmer B.F., Powers R.L., Zhang T.H., Lee J., Vigant F., Lee B., . . . Aguilar H.C. (2017). Inhibition of an aquatic rhabdovirus demonstrates promise of a broad-spectrum antiviral for use in Aquaculture. J. Virol., 91: e02181-16. Search in Google Scholar

Bhattacharya A., Sood P., Citovsky V. (2010). The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol. Plant Pathol., 11: 705–719. Search in Google Scholar

Buchmann K. (2013). Impact and control of protozoan parasites in maricultured fishes. Parasitology, 142: 168–177. Search in Google Scholar

Cabello F.C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ. Microbiol., 8: 1137–1144. Search in Google Scholar

Chakraborty S.B., Hancz C. (2011). Application of phytochemicals as immunostimulant, antipathogenic and antistress agents in finfish culture. Rev. Aquac., 3: 103–119. Search in Google Scholar

Chakraborty S.B., Horn P., Hancz, C. (2014). Application of phytochemicals as growth-promoters and endocrine modulators in fish culture. Rev. Aquac., 6: 1–19. Search in Google Scholar

Choi J.-G., Kang O.-H., Lee Y.-S., Oh Y.-C., Chae H.-S., Jang H.-J., . . . Kwon D.-Y. (2009). Antibacterial activity of methyl gallate isolated from Galla rhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules, 14: 1773–1780. Search in Google Scholar

Crane M., Hyatt A. (2011). Viruses of fish: An overview of significant pathogens. Viruses, 3: 2025–2046. Search in Google Scholar

Dai J., Mumper R.J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15: 7313–7352. Search in Google Scholar

Dawood M.A.O., Metwally A.E.-S., El-Sharawy M.E., Ghozlan A.M., Abdel-Latif H.M.R., Van Doan H., Ali M.A.M. (2020). The influences of ferulic acid on the growth performance, haemato-immunological responses, and immune-related genes of Nile tilapia (Oreochromis niloticus) exposed to heat stress. Aquaculture, 525: 735320. Search in Google Scholar

Defoirdt T., Sorgeloos P., Bossier P. (2011). Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol., 14: 251–258. Search in Google Scholar

Ding S., Jiang H., Fang J. (2018). Regulation of immune function by polyphenols. J. Immunol. Res., 1264074.10.1155/2018/1264074592514229850614 Search in Google Scholar

Dormán G., Flachner B., Hajdú I., András C. (2021). Chapter 23 – Target identification and polypharmacology of nutraceuticals. In R. C. Gupta, R. Lall, & A. Srivastava (Eds.), Nutraceuticals (Second Edition) (pp. 315–343): Academic Press. Search in Google Scholar

El-Son M.A.M., Hendam B.M., Nofal M.I., Abdel-Latif H.M.R. (2022). Effects of Moringa oleifera-based diets on growth, immunological responses, liver antioxidant biomarkers and expression of immune-related genes in Nile tilapia (Oreochromis niloticus) raised in hapa-in-pond system. Aquac. Res., 53: 4338–4352. Search in Google Scholar

El-Son M.A.M., Nofal M.I., Abdel-Latif H.M.R. (2021). Co-infection of Aeromonas hydrophila and Vibrio parahaemolyticus isolated from diseased farmed striped mullet (Mugil cephalus) in Manzala, Egypt – A case report. Aquaculture, 530: 735738. Search in Google Scholar

Farag M.R., Alagawany M., Khalil S.R., El-Hady E.W., Elhady W.M., Ismail T.A., . . . Abdel-Latif H.M.R. (2022). Immunosuppressive effects of thallium toxicity in Nile tilapia fingerlings: Elucidating the rescue role of Astragalus membranaceus polysaccharides. Front. Vet. Sci., 9: 843031. Search in Google Scholar

Farag M.R., Alagawany M., Khalil S.R., Moustafa A.A., Mahmoud H.K., Abdel-Latif H.M.R. (2021). Astragalus membranaceus polysaccharides modulate growth, hemato-biochemical indices, hepatic antioxidants, and expression of HSP70 and apoptosis-related genes in Oreochromis niloticus exposed to sub-lethal thallium toxicity. Fish Shellfish Immunol., 118: 251–260. Search in Google Scholar

Hikal W., Said-Al Ahl H., Tkachenko K., Mahmoud A., Bratovcic A., Hodžić S., Atanassova M. (2022). An overview of pomegranate peel: A waste treasure for antiviral activity. Trop. J. Nat. Prod. Res., 6: 15–19. Search in Google Scholar

Hoseinifar S.H., Jahazi M.A., Nikdehghan N., Van Doan H., Volpe M.G., Paolucci M. (2020). Effects of dietary polyphenols from agricultural by-products on mucosal and humoral immune and antioxidant responses of convict cichlid (Amatitlania nigrofasciata). Aquaculture, 517: 734790. Search in Google Scholar

Howell A.B., Reed J.D., Krueger C.G., Winterbottom R., Cunningham D.G., Leahy M. (2005). A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry, 66: 2281–2291. Search in Google Scholar

Hussain T., Tan B., Yin Y., Blachier F., Tossou M.C.B., Rahu N. (2016). Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev., 7432797. Search in Google Scholar

Hussein M.M.A., Wada S., Hatai K., Yamamoto A. (2000). Antimycotic activity of eugenol against selected water molds. J. Aquat. Anim. Health, 12: 224–229. Search in Google Scholar

Jang J.Y., Shin H., Lim J.-W., Ahn J.H., Jo Y.H., Lee K.Y., . . . Lee M.K. (2018). Comparison of antibacterial activity and phenolic constituents of bark, lignum, leaves and fruit of Rhus verniciflua. PLOS ONE, 13: e0200257. Search in Google Scholar

Ji R., Li Y., Li X., Xiang X., Li Y., Zhu S., . . . Ai Q. (2018). Effects of dietary tea polyphenols on growth, biochemical and antioxidant responses, fatty acid composition and expression of lipid metabolism related genes of large yellow croaker (Larimichthys crocea). Aquac. Res., 49: 1210–1218. Search in Google Scholar

John C.M., Sandrasaigaran P., Tong C.K., Adam A., Ramasamy R. (2011). Immunomodulatory activity of polyphenols derived from Cassia auriculata flowers in aged rats. Cell. Immunol., 271: 474–479. Search in Google Scholar

Kang J., Li Q., Liu L., Jin W., Wang J., Sun Y. (2018). The specific effect of gallic acid on Escherichia coli biofilm formation by regulating pgaABCD genes expression. Appl. Microbiol. Biotechnol., 102: 1837–1846. Search in Google Scholar

Khoo L. (2000). Fungal Diseases in Fish. Seminars in Avian and Exotic Pet Medicine, 9: 102–111. Search in Google Scholar

Kilari E.K., Putta S. (2016). Biological and phytopharmacological descriptions of Litchi Chinensis. Pharmacogn. Rev., 10: 60–65. Search in Google Scholar

Kot B., Kwiatek K., Janiuk J., Witeska M., Pękala-Safińska A. (2019). Antibacterial activity of commercial phytochemicals against Aeromonas species isolated from fish. Pathogens, 8: 142. Search in Google Scholar

Leiro J., Arranz J.A., Parama A., Alvarez M.F., Sanmartin M.L. (2004). In vitro effects of the polyphenols resveratrol, mangiferin and (–)-epigallocatechin-3-gallate on the scuticociliate fish pathogen Philasterides dicentrarchi. Dis. Aquat. Org., 59: 171-174. Search in Google Scholar

Leyva-López N., Lizárraga-Velázquez C.E., Hernández C., Sánchez-Gutiérrez E.Y. (2020). Exploitation of agro-industrial waste as potential source of bioactive compounds for Aquaculture. Foods, 9: 843. Search in Google Scholar

Li A.-N., Li S., Zhang Y.-J., Xu X.-R., Chen Y.-M., Li H.-B. (2014). Resources and biological activities of natural polyphenols. Nutrients, 6: 6020–6047. Search in Google Scholar

Li M., Wei D., Huang S., Huang L., Xu F., Yu Q., . . . Li P. (2022). Medicinal herbs and phytochemicals to combat pathogens in aquaculture. Aquac. Int., 30: 1239–1259. Search in Google Scholar

Li Z.-J., Liu M., Dawuti G., Dou Q., Ma Y., Liu H.-G., Aibai S. (2017). Antifungal activity of gallic acid in vitro and in vivo. Phytother. Res., 31: 1039–1045. Search in Google Scholar

Liu Y.-M., Zhang Q.-Z., Xu D.-H., Fu Y.-W., Lin D.-J., Zhou S.-Y., Li J.-P. (2017). Antiparasitic efficacy of curcumin from Curcuma longa against Ichthyophthirius multifiliis in grass carp. Vet. Parasitol., 236: 128–136. Search in Google Scholar

Magrone T., Fontana S., Laforgia F., Dragone T., Jirillo E., Passantino L. (2016). Administration of a polyphenol-enriched feed to farmed sea bass (Dicentrarchus labrax L.) modulates intestinal and spleen immune responses. Oxid. Med. Cell. Longev., 2827567. Search in Google Scholar

Mahmoud H.K., Farag M.R., Reda F.M., Alagawany M., Abdel-Latif H.M.R. (2022). Dietary supplementation with Moringa oleifera leaves extract reduces the impacts of sub-lethal fipronil in Nile tilapia, Oreochromis niloticus. Sci. Rep., 12: 21748. Search in Google Scholar

Maiti P., Dunbar G.L. (2018). Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int. J. Mol. Sci., 19: 1637. Search in Google Scholar

Maldonado-Garcia M., Angulo C., Vazquez-Martinez J., Sanchez V., Lopez M.G., Reyes-Becerril M. (2019). Antioxidant and immunostimulant potentials of Chenopodium ambrosioides L. in Pacific red snapper (Lutjanus peru). Aquaculture, 513: 734414. Search in Google Scholar

Maqsood S., Benjakul S., Abushelaibi A., Alam A. (2014). Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: A detailed review. Compr. Rev. Food Sci. Food Saf., 13: 1125–1140. Search in Google Scholar

Mileo A.M., Nisticò P., Miccadei S. (2019). Polyphenols: Immunomodulatory and therapeutic implication in colorectal cancer. Front. Immunol., 10.10.3389/fimmu.2019.00729647025831031748 Search in Google Scholar

Mohammadi G., Rafiee G., El Basuini M.F., Van Doan H., Ahmed H.A., Dawood M.A.O., Abdel-Latif H.M.R. (2020). Oregano (Origanum vulgare), St John’s-wort (Hypericum perforatum), and lemon balm (Melissa officinalis) extracts improved the growth rate, antioxidative, and immunological responses in Nile tilapia (Oreochromis niloticus) infected with Aeromonas hydrophila. Aquac. Rep., 18: 100445. Search in Google Scholar

Mohammadi M., Soltani M., Siahpoosh A., Hosseini Shekarabi S.P., Shamsaie Mehrgan M., Lymbery A. (2018). Effect of date palm (Phoenix dactylifera) seed extract as a dietary supplementation on growth performance immunological haematological biochemical parameters of common carp. Aquac. Res., 49: 2903–2912. Search in Google Scholar

Mohy El-Din S.M., El-Ahwany A.M.D. (2016). Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J. Taibah Univ. Sci., 10: 471–484. Search in Google Scholar

Montenegro I., Sánchez E., Werner E., Godoy P., Olguín Y., Caro N., . . . Madrid A. (2019). Isolation and identification of compounds from the resinous exudate of Escallonia illinita Presl. and their anti-oomycete activity. BMC Chemistry, 13: 1. Search in Google Scholar

Mostafavi Z.S., Shekarabi S.P.H., Mehrgan M.S., Islami H.R. (2022). Amelioration of growth performance, physio-metabolic responses, and antioxidant defense system in rainbow trout, Oncorhynchus mykiss, using dietary dandelion, Taraxacum officinale, flower extract. Aquaculture, 546: 737296. Search in Google Scholar

Munang’andu H.M., Mutoloki S., Evensen Ø. (2016). Chapter 5 – Prevention and control of viral diseases in Aquaculture. In F.S.B. Kibenge & M.G. Godoy (Eds.), Aquaculture Virology (pp. 77–93). San Diego: Academic Press. Search in Google Scholar

Naiel M.A.E., Alagawany M., Patra A.K., El-Kholy A.I., Amer M.S., Abd El-Hack M.E. (2021). Beneficial impacts and health benefits of macroalgae phenolic molecules on fish production. Aquaculture, 534: 736186. Search in Google Scholar

Naiel M.A.E., Ismael N.E.M., Negm S.S., Ayyat M.S., Al-Sagheer A.A. (2020). Rosemary leaf powder–supplemented diet enhances performance, antioxidant properties, immune status, and resistance against bacterial diseases in Nile tilapia (Oreochromis niloticus). Aquaculture, 526: 735370. Search in Google Scholar

Naiel M.A.E., Ismael N.E.M., Shehata, S.A. (2019). Ameliorative effect of diets supplemented with rosemary (Rosmarinus officinalis) on aflatoxin B1 toxicity in terms of the performance, liver histopathology, immunity and antioxidant activity of Nile tilapia (Oreochromis niloticus). Aquaculture, 511: 734264. Search in Google Scholar

Oniszczuk T., Oniszczuk A., Gondek E., Guz L., Puk K., Kocira A., . . . Wójtowicz A. (2019). Active polyphenolic compounds, nutrient contents and antioxidant capacity of extruded fish feed containing purple coneflower (Echinacea purpurea (L.) Moench.). Saudi J. Biol. Sci., 26: 24–30. Search in Google Scholar

Pandey K.B., Rizvi S.I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2: 897484. Search in Google Scholar

Pietta P., Minoggio M., Bramati L. (2003). Plant polyphenols: Structure, occurrence and bioactivity. In A.-u. Rahman (Ed.), Studies in natural products chemistry, 28: 257–312. Search in Google Scholar

Prasad V.G.N.V., Krishna B.V., Swamy P.L., Rao T.S., Rao G.S. (2014). Antibacterial synergy between quercetin and polyphenolic acids against bacterial pathogens of fish. Asian Pac. J. Trop. Dis., 4: S326–S329. Search in Google Scholar

Ramezani F., Shekarabi S.P.H., Mehrgan M.S., Foroudi F., Islami H.R. (2021). Supplementation of Siberian sturgeon (Acipenser baerii) diet with barberry (Berberis vulgaris) fruit extract: Growth performance, hemato-biochemical parameters, digestive enzyme activity, and growth-related gene expression. Aquaculture, 540: 736750. Search in Google Scholar

Salehi B., Mishra A.P., Nigam M., Sener B., Kilic M., Sharifi-Rad M., . . . Sharifi-Rad J. (2018). Resveratrol: A double-edged sword in health benefits. Biomedicines, 6: 91. Search in Google Scholar

Salehi M., Soltani M., Hosseini-Shekarabi S.P. (2016). Effects of antifungal activity of Daenensis thyme (Thymus daenensis) and Mentha (Mentha longifolia) essential oils on rainbow trout (Oncorhynchus mykiss) eggs hatchability. Iran. J. Aquat. Anim. Health, 2: 97–107. Search in Google Scholar

Samavat Z., Shamsaie Mehrgan M., Jamili S., Soltani M., Hosseini Shekarabi S.P. (2019). Determination of grapefruit (Citrus paradisi) peel extract bio-active substances and its application in Caspian white fish (Rutilus frisii kutum) diet: Growth, haemato-biochemical parameters and intestinal morphology. Aquac. Res., 50: 2496–2504. Search in Google Scholar

Santos L., Ramos F. (2018). Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. Int. J. Antimicrob. Agents, 52: 135–143. Search in Google Scholar

Shekarabi S.P.H., Javarsiani L., Mehrgan M.S., Dawood M.A.O., Adel M. (2022 a). Growth performance, blood biochemistry profile, and immune response of rainbow trout (Oncorhynchus mykiss) fed dietary Persian shallot (Allium stipitatum) powder. Aquaculture, 548: 737627.10.1016/j.aquaculture.2021.737627 Search in Google Scholar

Shekarabi S.P.H., Mehrgan M.S., Ramezani F., Dawood M.A.O., Van Doan H., Moonmanee T., . . . Kari Z.A. (2022 b). Effect of dietary barberry fruit (Berberis vulgaris) extract on immune function, antioxidant capacity, antibacterial activity, and stress-related gene expression of Siberian sturgeon (Acipenser baerii). Aquac. Rep., 23: 101041.10.1016/j.aqrep.2022.101041 Search in Google Scholar

Song K., Ling F., Huang A., Dong W., Liu G., Jiang C., . . . Wang G. (2015). In vitro and in vivo assessment of the effect of antiprotozoal compounds isolated from Psoralea corylifolia against Ichthyophthirius multifiliis in fish. Int. J. Parasitol. Drugs Drug Resist., 5: 58–64. Search in Google Scholar

Sudheesh P.S., Al-Ghabshi A., Al-Mazrooei N., Al-Habsi S. (2012). Comparative pathogenomics of bacteria causing infectious diseases in fish. Int. J. Evol. Biol., 1–16.10.1155/2012/457264336457522675651 Search in Google Scholar

Taguri T., Tanaka T., Kouno I. (2004). Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol. Pharm. Bull., 27: 1965–1969. Search in Google Scholar

Tsimogiannis D., Oreopoulou V. (2019). Chapter 16 – Classification of phenolic compounds in plants. In R.R. Watson (Ed.), Polyphenols in plants (Second Edition), 263–284: Academic Press. Search in Google Scholar

Vaseeharan B., Thaya R. (2014). Medicinal plant derivatives as immunostimulants: an alternative to chemotherapeutics and antibiotics in aquaculture. Aquac. Int., 22: 1079–1091. Search in Google Scholar

Vincent A.T., Gauthier J., Derome N., Charette S.J. (2019). The rise and fall of antibiotics in Aquaculture. In N. Derome (Ed.), Microbial communities in Aquaculture ecosystems: Improving productivity and sustainability (pp. 1–19). Cham: Springer International Publishing. Search in Google Scholar

Wang K., Conlon M., Ren W., Chen B.B., Bączek T. (2018). Natural products as targeted modulators of the immune system. J. Immunol. Res., 7862782.10.1155/2018/7862782636947330809554 Search in Google Scholar

Watts J.E.M., Schreier H.J., Lanska L., Hale M.S. (2017). The rising tide of antimicrobial resistance in Aquaculture: Sources, sinks and solutions. Mar. Drugs, 15: 158. Search in Google Scholar

Yahfoufi N., Alsadi N., Jambi M., Matar C. (2018). The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 10: 1618. Search in Google Scholar

Yanong R.P.E. (2003). Fungal Diseases of Fish. Veterinary Clinics: Exotic Animal Practice, 6: 377–400. Search in Google Scholar

Zhao G., Chung K.-T., Milow K., Wang W., Stevens Jr S.E. (1997). Antibacterial properties of tannic acid and related compounds against the fish pathogen Cytophaga columnaris. J. Aquat. Anim. Health, 9: 309–313. Search in Google Scholar

Articles recommandés par Trend MD