À propos de cet article

Citez

Abd El Tawab A.M., Kholif A.E., Khattab M.S.A., Shaaban M.M., Hadhoud F.I., Mostafa M.M.M., Olafadehan O.A. (2020). Feed utilization and lactational performance of Barki sheep fed diets containing thyme or celery. Small Rumin. Res. 192: 106249. https://doi.org/10.1016/j.smallrumres.2020.106249 Search in Google Scholar

Abdel-Raheem S.M., Hassan E.H. (2021). Effects of dietary inclusion of Moringa oleifera leaf meal on nutrient digestibility, rumen fermentation, ruminal enzyme activities and growth performance of buffalo calves. Saudi J. Biol. Sci. 28: 4430–4436. https://doi.org/10.1016/j.sjbs.2021.04.037832493834354427 Search in Google Scholar

AOAC (2005). Official Methods of Analysis of AOAC International, 18th ed, Association of Officiating Analytical Chemists. AOAC International, Washington DC. Search in Google Scholar

Cohen-Zinder M., Weinberg Z., Leibovich H., Chen Y., Rosen M., Sagi G., Orlov A., Agmon R., Yishay M., Miron J., Shabtay A. (2017). Ensiled Moringa oleifera: An antioxidant-rich feed that improves dairy cattle performance. J. Agric. Sci. 155: 1174–1186. https://doi.org/10.1017/S0021859617000387 Search in Google Scholar

Ebeid H.M., Kholif A.E., Chrenkova M., Anele U.Y. (2020a). Ruminal fermentation kinetics of Moringa oleifera leaf and seed as protein feeds in dairy cow diets: in sacco degradability and protein and fiber fractions assessed by the CNCPS method. Agrofor. Syst. 94: 905–915. https://doi.org/10.1007/s10457-019-00456-7 Search in Google Scholar

Ebeid H.M., Mengwei L., Kholif A.E., Hassan F. ul, Lijuan P., Xin L., Chengjian Y. (2020b). Moringa oleifera oil modulates rumen microflora to mediate in vitro fermentation kinetics and methanogenesis in total mix rations. Curr. Microbiol. 77: 1271–1282. https://doi.org/10.1007/s00284-020-01935-232130505 Search in Google Scholar

Etim N.N., Enyenihi G.E., Williams M.E., Udo M.D., Offiong E.E.A. (2013). Haematological parameters: indicators of the physiological status of farm animals. Br. J. Sci. 10: 33–45. Search in Google Scholar

Fadiyimu A., Alokan J., Fajemisin A. (2010). Digestibility, nitrogen balance and haematological profile of West African dwarf sheep fed dietary levels of Moringa oleifera as supplement to Panicum maximum. J. Am. Sci. 6: 634–643. Search in Google Scholar

Ferret A., Plaixats J., Caja G., Gasa J., Prió P. (1999). Using markers to estimate apparent dry matter digestibility, faecal output and dry matter intake in dairy ewes fed Italian ryegrass hay or alfalfa hay. Small Rumin. Res. 33: 145–152. https://doi.org/10.1016/S0921-4488(99)00015-2 Search in Google Scholar

Hosten A.O. (1990). BUN and Creatinine, in: Walker, H.K., Hall, W.D., Hurst, J.W. (Eds.), Clinical Methods: The History, Physical, and Laboratory Examinations. Butterworths, Boston, MA, pp. 874–878. Search in Google Scholar

Jones M., Jones G. (2012). Animal nutrition, 7th ed, IGCSE Biology. Pearson Education Limited, UK. https://doi.org/10.1017/cbo9780511862793.008 Search in Google Scholar

Kholif A.E., Gouda G.A., Abu Elella A.A., Patra A.K. (2022). Moringa oleifera leaves silage and Chlorella vulgaris microalgae mixture in diets of Damascus goats: lactation performance, nutrient utilization, and ruminal fermentation. Animals 12: 1589. https://doi.org/10.3390/ani12121589921960735739926 Search in Google Scholar

Kholif A.E., Gouda G.A., Anele U.Y., Galyean M.L. (2018a). Extract of Moringa oleifera leaves improves feed utilization of lactating Nubian goats. Small Rumin. Res. 158: 69–75. https://doi.org/10.1016/j.smallrumres.2017.10.014 Search in Google Scholar

Kholif A.E., Gouda G.A., Galyean M.L., Anele U.Y., Morsy T.A. (2019). Extract of Moringa oleifera leaves increases milk production and enhances milk fatty acid profile of Nubian goats. Agrofor. Syst. 93: 1877–1886. https://doi.org/10.1007/s10457-018-0292-9 Search in Google Scholar

Kholif A.E., Gouda G.A., Morsy T.A., Salem A.Z.M., Lopez S., Kholif A.M. (2015). Moringa oleifera leaf meal as a protein source in lactating goat’s diets: Feed intake, digestibility, ruminal fermentation, milk yield and composition, and its fatty acids profile. Small Rumin. Res. 129: 129–137. https://doi.org/10.1016/j.smallrumres.2015.05.007 Search in Google Scholar

Kholif A.E., Gouda G.A., Olafadehan O.A., Abdo M.M. (2018b). Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. Animal 12: 964–972. https://doi.org/10.1017/S175173111700233628988560 Search in Google Scholar

Kholif A.E., Hassan A.A., El Ashry G.M., Bakr M.H., El-Zaiat H.M., Olafadehan O.A., Matloup O.H., Sallam S.M.A. (2021a). Phytogenic feed additives mixture enhances the lactational performance, feed utilization and ruminal fermentation of Friesian cows. Anim. Biotechnol. 32: 708–718. https://doi.org/10.1080/10495398.2020.174632232248772 Search in Google Scholar

Kholif A.E., Matloup O.H., EL-Bltagy E.A., Olafadehan O.A., Sallam S.M.A., El-Zaiat H.M. (2021b). Humic substances in the diet of lactating cows enhanced feed utilization, altered ruminal fermentation, and improved milk yield and fatty acid profile. Livest. Sci. 253: 104699. https://doi.org/10.1016/j.livsci.2021.104699 Search in Google Scholar

Kholif A.E., Morsy T.A., Gouda G.A., Anele U.Y., Galyean M.L. (2016). Effect of feeding diets with processed Moringa oleifera meal as protein source in lactating Anglo-Nubian goats. Anim. Feed Sci. Technol. 217: 45–55. https://doi.org/10.1016/j.anifeedsci.2016.04.012 Search in Google Scholar

Kholif A.E., Olafadehan O.A. (2022). Dietary strategies to enrich milk with healthy fatty acids – A review. Ann. Anim. Sci. 22: 523–536. https://doi.org/10.2478/aoas-2021-0058 Search in Google Scholar

Kholif A.E., Olafadehan O.A. (2021). Essential oils and phytogenic feed additives in ruminant diet: chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochem. Rev. 20: 1087–1108. https://doi.org/10.1007/s11101-021-09739-3 Search in Google Scholar

Makkar H.P.S. (2003). Quantification of Tannins in Tree and Shrub Foliage, Quantification of Tannins in Tree and Shrub Foliage. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-017-0273-7 Search in Google Scholar

Meier B., Julkunen-Tiitto R., Tahvanainen J., Sticher O. (1988). Comparative high-performance liquid and gas-liquid chromatographic determination of phenolic glucosides in salicaceae species. J. Chromatogr. A 442: 175–186. https://doi.org/10.1016/S0021-9673(00)94467-4 Search in Google Scholar

Mendieta-Araica B., Spörndly E., Reyes-Sánchez N., Spörndly R. (2011). Feeding Moringa oleifera fresh or ensiled to dairy cows-effects on milk yield and milk flavor. Trop. Anim. Health Prod. 43: 1039–1047. https://doi.org/10.1007/s11250-011-9803-721344294 Search in Google Scholar

Morales S.G.D., Rosales R.B., Vergara D.M.B., Chirinda N., Arango J. (2021). Feeding strategies to increase nitrogen retention and improve rumen fermentation and rumen microbial population in beef steers fed with tropical forages. Sustainability 13(18), 10312. https://doi.org/10.3390/SU131810312 Search in Google Scholar

Morsy T.A., Gouda G.A., Kholif A.E. (2022). In vitro fermentation and production of methane and carbon dioxide from rations containing Moringa oleifera leave silage as a replacement of soybean meal: in vitro assessment. Environ. Sci. Pollut. Res. In press. https://doi.org/10.1007/s11356-022-20622-2951274335570255 Search in Google Scholar

Nickless G. (2009). How to interpret liver function tests. Pharmaceutical Journal 1, 363–366. https://doi.org/10.1211/PJ.2021.1.105975 Search in Google Scholar

NRC (2007). Nutrient Requirements of Small Ruminants, Nutrient Requirements of Small Ruminants. National Academies Press, Washington, D.C. https://doi.org/10.17226/11654 Search in Google Scholar

Olafadehan O.A. (2013). Feeding value of Pterocarpus erinaceus for growing goats. Anim. Feed Sci. Technol. 185: 1–8. https://doi.org/10.1016/j.anifeedsci.2013.05.014 Search in Google Scholar

Olafadehan O.A. (2011). Changes in haematological and biochemical diagnostic parameters of Red Sokoto goats fed tannin-rich Pterocarpus erinaceus forage diets. Veterinarski Arhiv 81: 471–483. Search in Google Scholar

Olafadehan O.A., Adebayo O.F. (2016). Nutritional evaluation of ammoniated ensiled threshed sorghum top as a feed for goats. Trop. Anim. Health Prod. 48: 785–791. https://doi.org/10.1007/s11250-016-1027-426898693 Search in Google Scholar

Olafadehan O.A., Njidda A.A., Okunade S.A., Adewumi M.K., Awosanmi K.J., Ijanmi T.O., Raymond A. (2016). Effects of feeding Ficus polita foliage-based complete rations with varying forage: Concentrate ratio on performance and ruminal fermentation in growing goats. Anim. Nutr. Feed Technol. 16: 373–382. https://doi.org/10.5958/0974-181X.2016.00033.0 Search in Google Scholar

Olafadehan O.A., Okunade S.A. (2018). Fodder value of three browse forage species for growing goats. J. Saudi Soc. Agric. Sci. 17: 43–50. https://doi.org/10.1016/j.jssas.2016.01.001 Search in Google Scholar

Olafadehan O.A., Okunade S.A., Njidda A.A., Kholif A.E., Kolo S.G., Alagbe J.O. (2020). Concentrate replacement with Daniellia oliveri foliage in goat diets. Trop. Anim. Health Prod. 52: 227–233. https://doi.org/10.1007/s11250-019-02002-031297686 Search in Google Scholar

Sallam S., Kholif A.E., Kadoom M., Nour El-Din A., Attia M., Matloup O., Olafadehan O. (2021). Two levels of palmitic acid-enriched fat supplement affect lactational performance of Holstein cows and feed utilization of Barki sheep. Agric. Conspec. Sci. 86: 153–163. Search in Google Scholar

Su B., Chen X. (2020). Current status and potential of Moringa oleifera leaf as an alternative protein source for animal feeds. Front. Vet. Sci. 7: 53. https://doi.org/10.3389/fvets.2020.00053705428032175333 Search in Google Scholar

Tajima K., Aminov R.I., Nagamine T., Matsui H., Nakamura M., Benno Y. (2001). Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67: 2766–2774. https://doi.org/10.1128/AEM.67.6.2766-2774.20019293711375193 Search in Google Scholar

Tyrrell H.F., Reid J.T. (1965). Prediction of the energy value of cow’s milk. J. Dairy Sci. 48: 1215–1223. https://doi.org/10.3168/jds.S0022-0302(65)88430-25843077 Search in Google Scholar

Ulbricht T.L.V., Southgate D.A.T. (1991). Coronary heart disease: seven dietary factors. Lancet 338: 985–992. https://doi.org/10.1016/0140-6736(91)91846-M Search in Google Scholar

Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-21660498 Search in Google Scholar

Vanhatalo A., Varvikko T., Huhtanen P. (2003). Effects of various glucogenic sources on production and metabolic responses of dairy cows fed grass silage-based diets. J. Dairy Sci. 86: 3249–3259. https://doi.org/10.3168/jds.S0022-0302(03)73928-914594245 Search in Google Scholar

Waghorn G.C., Ulyatt M.J., John A., Fisher M.T. (1987). The effect of condensed tannins on the site of digestion of amino acids and other nutrients in sheep fed on Lotus corniculatus L. Br. J. Nutr. 57: 115–126. https://doi.org/10.1079/BJN198700153801377 Search in Google Scholar

Wanapat M., Totakul P., Viennasay B., Matra M. (2021). Sunnhemp (Crotalaria juncea, L.) silage can enrich rumen fermentation process, microbial protein synthesis, and nitrogen utilization efficiency in beef cattle crossbreds. Trop. Anim. Health Prod. 53: 187. https://doi.org/10.1007/s11250-021-02628-z33651183 Search in Google Scholar

Yanza Y.R., Szumacher-Strabel M., Lechniak D., Ślusarczyk S., Kolodziejski P., Patra A.K., Váradyová Z., Lisiak D., Vazirigohar M., Cieslak A. (2022). Dietary Coleus amboinicus Lour. decreases ruminal methanogenesis and biohydrogenation, and improves meat quality and fatty acid composition in longissimus thoracis muscle of lambs. J. Anim. Sci. Biotechnol. 13: 5. https://doi.org/10.1186/s40104-021-00654-3876573335027089 Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine