1. bookVolume 22 (2022): Edition 3 (July 2022)
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Gene expression adjustment of inflammatory mechanisms in dairy cow mammary gland parenchyma during host defense against staphylococci

Publié en ligne: 19 Jul 2022
Volume & Edition: Volume 22 (2022) - Edition 3 (July 2022)
Pages: 903 - 913
Reçu: 10 Jan 2022
Accepté: 28 Mar 2022
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
Abstract

The aim of the study was to identify differences in the expression of splice variants of the PRMT2, LTF and C4A genes in the mammary glands of healthy dairy cows and those infected with staphylococci. An expression study was conducted on 38 Polish Holstein-Friesian dairy cows who were removed from the herd owing to subclinical and chronic mastitic or reproductive issues. Two days before slaughter, milk samples were taken for microbiological analysis and examined for the presence of bacteria. The mammary gland parenchyma samples with a predominance of secretory tissue were taken; these were divided into three groups according to the health status of the mammary gland: H (without pathogenic bacteria in milk), CoNS (with coagulase-negative staphylococci in milk), and CoPS (with coagulase-positive staphylococci in milk). Two of the investigated genes, LTF and C4A, demonstrated variants unequivocally expressed in infected tissue. Two LTF gene variants were found to be associated with cow health status, and with the type of bacteria causing mastitis (CoPS or CoNS). In addition, the expression of C4A isoforms differed with regard to mastitis etiology groups. The comprehensive evaluation of PRMT2 transcript suggested that the gene may also be involved in course of mastitis: two of four PRMT2 transcripts showed increased expression in the mammary gland of the CoPS group compared to controls. The obtained results are important for the knowledge on the etiology of bovine mastitis. The effects of the identified mastitis-relevant splice variants need to be further explored on the protein level to verify the suitability of splice variants and recognize their contribution towards the disease phenotypes and course.

Keywords

Akhtar M., Guo S., Guo Y. F., Zahoor A., Shaukat A., Chen Y., Umar T., Deng G., Guo M. (2020). Upregulated-gene expression of Pro-inflammatory cytokines TNF-α, IL-1β and IL-6 via TLRs following NF-κB and MAPKs in bovine mastitis. Acta Tropica, 207: 105458. Search in Google Scholar

Alluwaimi A. M., Leutenegger C. M., Farver T. B., Rossitto P. V., Smith W. L., Cullor J. S. (2003). The cytokine markers in Staphylococcus aureus mastitis of bovine mammary gland. J Vet. Med., 50: 105-111. Search in Google Scholar

Bagnicka E., Kawecka-Grochocka E., Pawlina-Tyszko K., Zalewska M., Kapusta A., Kościuczuk E., Marczak S., Ząbek T. (2021). MicroRNA expression profile in bovine mammary gland parenchyma infected by coagulase-positive or coagulase-negative staphylococci. Vet. Res., 521: 1–20. Search in Google Scholar

Baker E. N., Baker H.M. (2005). Molecular structure, binding properties and dynamics of lactoferrin. Cell. Mol. Life Sci., 62: 2531–2539. Search in Google Scholar

Bannerman D.D. (2009). Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J. Anim. Sci., 87: 10–25. Search in Google Scholar

Bannerman D.D., Paape M. J., Lee J.W., Zhao X., Hope J.C., Rainard P. (2004). Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diag. Lab. Immunol., 11: 463–472. Search in Google Scholar

Bionaz M., Loor J.J. (2007). Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol. Genom., 29: 312–319. Search in Google Scholar

Cáceres J. F., Kornblihtt A.R. (2002). Alternative splicing: multiple control mechanisms and involvement in human disease. Trends in Genet., 18: 186–193. Search in Google Scholar

Chacko E., Ranganathan S. (2009). Genome-wide analysis of alternative splicing in cow: implications in bovine as a model for human diseases. BMC Genom., 10: 11. Search in Google Scholar

Chaneton L., Tirante L., Maito J., Chaves J., Bussmann L. E. (2008). Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J Dairy Sci., 91: 1865–1873. Search in Google Scholar

Ellison R. T. (1994). The effects of lactoferrin on gram-negative bacteria. Adv. Exp. Med. Biol., 357: 71–90. Search in Google Scholar

Ferens W. A., Goff W. L., Davis W. C., Fox L. K., Deobald C., Hamilton M.J., Bohach G.A. (1998). Induction of type-2 cytokines by a Staphylococcal enterotoxins superantigen. J. Nat. Tox., 7: 193–213. Search in Google Scholar

Fonseca I., Silva P. V., Lange C. C., Guimarães M. F., Morena Del Cambre M., Weller M. A., Silva Sousa K. R., Lopes P. S., Guimarães J. D., Guimarãe S. E. F. (2009). Expression profile of genes associated with mastitis in dairy cattle. Genet. Mol. Biol., 32: 776–781. Search in Google Scholar

Galante P. A., Sakabe N. J., Kirschbaum-Slager N., de Souza S. J. (2004). Detection and evaluation of intron retention events in the human transcriptome. RNA, 10: 757–765. Search in Google Scholar

Garcia-Blanco M. A., Baraniak A.P. Lasda, E. L. (2004). Alternative splicing in disease and therapy. Nat. Biotechnol., 22: 535–546. Search in Google Scholar

Gifford J. L., Hunter H. N., Vogel H. J. (2005). Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci., 62: 2588–2598. Search in Google Scholar

Hagiwara S., Kawai K., Anri A., Nagahata H. (2003). Lactoferrin concentrations in milk from normal and subclinical mastitic cows. J. Vet. Med. Sci., 65: 319–323. Search in Google Scholar

Huang J. M., Wang Z. Y., Ju Z. H., Wang C. F., Li Q. L., Sun T., Hou Q. L., Hang S. Q., Hou M. H., Zhong J. F. (2011). Two splice variants of the bovine lactoferrin gene identified in Staphylococcus aureus isolated from mastitis in dairy cattle. Genet. Mol. Res., 10: 3199–3203. Search in Google Scholar

Ju Z., Jiang Q., Liu G., Wang X., Luo G., Zhang Y., Zhang J., Zhong J., Huang J. (2018). Solexa sequencing and custom micro RNA chip reveal repertoire of microRNAs in mammary gland of bovine suffering from natural infectious mastitis. Anim. Genet., 49: 3–18. Search in Google Scholar

Kawai K., Hagiwara S., Anri A., Nagahata H. (1999). Lactoferrin concentration in milk of bovine clinical mastitis. Vet. Res. Commun., 23: 391–398. Search in Google Scholar

Kim J.H., Yoo B. C., Yang W.S., Kim E., Hong S., Cho, J.Y. (2016). The role of protein arginine methyltransferases in inflammatory responses. Mediat Inflamm. 4028353.10.1155/2016/4028353479314027041824 Search in Google Scholar

Komine K. I., Komine Y., Kuroishi T., Kobayashi J., Obara Y., Kumagai K. (2005). Small molecule lactoferrin with an inflammatory effect but no apparent antibacterial activity in mastitic mammary gland secretion. J. Vet. Med., 67: 667–677. Search in Google Scholar

Korwin-Kossakowska A., Ropka-Molik K., Ząbek T., Szmatoła T., Brzozowska P., Gralak B., Kawecka-Grochocka E. Bagnicka E. (2020). Structural and functional analysis of the signaling lymphocytic activation molecule family 7 SLAMF7 gene in response to infection with coagulase-negative and coagulase-positive staphylococci. J Dairy Sci., 103: 8317–8329. Search in Google Scholar

Kościuczuk E. M., Lisowski P., Jarczak J., Krzyżewski J., Zwierzchowski L. Bagnicka E., (2014). Expressions patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci. BMC Vet. Res., 6: 246. Search in Google Scholar

Le Hir H., Charlet-Berguerand N., de Franciscis V., Thermes C., (2002). 5’-End RET splicing: absence of variants in normal tissues and intron retention in pheochromocytomas. Oncology, 63: 84–91. Search in Google Scholar

Li, N., Zhang J., Liao D., Yang L., Wang Y., Hou S. (2017). Association between C4, C4A, and C4B copy number variations and susceptibility to autoimmune diseases: a meta-analysis. Sci Rep., 7: 42628. Search in Google Scholar

Li Z., Zhai M., Wang H., Chen L., Wang L., Ru C., Song A., Liu X. (2014). Identification of splice variants, expression analysis and single nucleotide polymorphisms of the PRMT2 gene in dairy cattle. Gene, 539: 37–43. Search in Google Scholar

Merle N.S., Noe R., Halbwachs-Mecarelli L., Fremeaux-Bacchi V., Roumenina L.T. (2015). Complement system part II: role in immunity. Front Immunol, 6: 257. Search in Google Scholar

Nash D.L., Rogers G.W., Cooper J.B., Hargrove G.L., Keown J.F. (2003). Heritability of intramammary infections at first parturition and relationships with sire transmitting abilities for somatic cell score, udder type traits, productive life, and protein yield. J. Dairy Sci., 86: 2684–2695. Search in Google Scholar

Oviedo-Boyso J., Valdez-Alarcón J. J., Cajero-Juárez M., Ochoa-Zarzosa A., López-Meza J. E., Bravo-Patiño A., Baizabal-Aguirre V.M. (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Infect, 54: 399–409. Search in Google Scholar

Pawlik A., Sender G., Sobczyńska M., Korwin-Kossakowska A., Lassa H., Oprządek J. (2014 a). Lactoferrin gene variants, their expression in the udder and mastitis susceptibility in dairy cattle. Anim. Prod. Sci., 55: 999–1004.10.1071/AN13389 Search in Google Scholar

Pawlik A., Sender G., Sobczyńska M., Korwin-Kossakowska A., Oprządek J., Lukaszewicz M. (2014 b). Association between lactoferrin single nucleotide polymorphisms and milk production traits in Polish Holstein cattle. Arch. Tierz.- Arch. Anim. Breed., 57: 1–12.10.7482/0003-9438-57-027 Search in Google Scholar

Raj A., Kulangara V., VareedT. P., Melepat D. P., Chattothayil L., Chullipparambil S. (2021). Variations in the levels of acute-phase proteins and lactoferrin in serum and milk during bovine subclinical mastitis. J. Dairy Res., 88: 321–325. Search in Google Scholar

Rambeaud M., Almeida R.A., Pighetti G.M., Oliver S.P. (2003). Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet. Immunol. Immunopathol., 96: 193–205. Search in Google Scholar

Redwan E.M., Uversky V.N., El-Fakharany E.M., Al-Mehdar H. (2014). Potential lactoferrin activity against pathogenic viruses. Comp. Rendus Biol., 337: 581–595. Search in Google Scholar

Rio D.C. (1991). Regulation of Drosophila P element transposition. Trend. Genet., 7: 282–287. Search in Google Scholar

Shuster D.E., Kehrli M.E., Stevens M.G. (1993). Cytokine production during endotoxin-induced mastitis in lactating dairy cows. Am. J. Vet. Res., 54: 80–85. Search in Google Scholar

Stamm S., Ben-Ari S., Rafalska I., Tang Y., Zhang Z., Toiber D., Thanaraj T.A., Soreq H. (2005). Function of alternative splicing. Gene, 344: 1–20. Search in Google Scholar

Strzelecki J. (2009). Editor. NRIAP-INRA, Standard of ruminants’ feeding: Nutrient value of French and domestic fodders for ruminants. National Research Institute of Animal Production, Kraków, Poland, pp. 21–49. Search in Google Scholar

Swanson K.M., Stelwagen K., Dobson J., Henderson H.V., Davis S.R., Farr V.C., Singh K. (2009). Transcriptome Profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci., 92: 117–129. Search in Google Scholar

Wang E.T., Sandberg R., Luo S., Khrebtukova I., Zhang L., Mary C., Kingsmore S.F., Schroth G.P., Burge C.B. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456: 470–476. Search in Google Scholar

Wang X.G., Ju Z.H., Hou M.H., Jiang Q., Yang C.H., Zhang Y., Sun Y., Li R.L., Wang C.F., Zhong J.F., Huang J.M. (2016). Deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected with Staphylococcus aureus mastitis. Plos One, 11: e0167666. Search in Google Scholar

Ward P. P., Paz E., Conneely O.M. (2005). Multifunctional roles of lactoferrin: a critical overview. Cell. Mol. Life Sci., 62: 2540–2548. Search in Google Scholar

Wellnitz O., Kerr D.E. (2004). Cryopreserved bovine mammary cells to model epithelial response to infection. Vet. Immunol. Immunopathol., 101: 191–202. Search in Google Scholar

Wellnitz O., Berger U., Schaeren W., Bruckmaier R.M. (2012). Mastitis severity induced by two Streptococcus uberis strains is reflected by the mammary immune response in vitro. Schweizer Arch. Tierheilkunde, 154: 317. Search in Google Scholar

Yang L., Guo R., Ju Z., Wang X., Jiang Q., Liu Y., Zhao H., He K., Li J., Huang J. (2019). Production of an aberrant splice variant of CCL5 is not caused by genetic mutation in the mammary glands of mastitis infected Holstein cows. Mol. Med. Rep., 19: 4159–4166. Search in Google Scholar

Yang Y., Huang J.M., Ju Z.H., Li Q.L., Zhou L., Li R.L., Li J.B., Shi F.X., Zhong J.F., Wang C.F. (2012). Increased expression of a novel splice variant of the complement component 4 (C4A) gene in mastitis-infected dairy cattle. Genet. Mol. Res., 11: 2909–2916. Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo