[Cai Z., Guldbrandtsen B., Lund M.S., Sahana G. (2018). Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle. BMC Genomics, 19: 656.]Search in Google Scholar
[Chen Z., Xu X., Tan T., Chen D., Liang H. (2019). MicroRNA-145 regulates immune cytokines via targeting FSCN1 in Staphylococcus aureus-induced mastitis in dairy cows. Reprod. Domest. Anim., 54: 882–891.]Search in Google Scholar
[Fang L., Hou Y., An J., Li B., Song M. (2016). Genome-wide transcriptional and post-transcriptional regulation of innate immune and defense responses of bovine mammary gland to Staphylococcus aureus. Front. Cell. Infect. Microbiol., 6: 193.]Search in Google Scholar
[FresnoVara J.A., Casado E., de Castro J., Cejas P., Belda-Iniesta C., González-Barón M. (2004). P13K/Akt signalling pathway and cancer. Cancer Treatment Rev., 30: 193–204.]Search in Google Scholar
[Gomes F., Henriques M. (2016). Control of bovine mastitis: old and recent therapeutic approaches. Curr. Microbiol., 72: 377–382.]Search in Google Scholar
[Griesbeck-Zilch B., Osman M., Kühn C., Schwerin M., Bruckmaier R.H., Pfaffl M.W., Hammerle-Fickinger A., Meyer H.H., Wellnitz O. (2009). Analysis of key molecules of the innate immune system in mammary epithelial cells isolated from marker-assisted and conventionally selected cattle. J. Dairy Sci., 92: 4621–4633.]Search in Google Scholar
[Han H. (2019). Identification of several key genes by microarray data analysis of bovine mammary gland epithelial cells challenged with Escherichia coli and Staphylococcus aureus. Gene, 683: 123–132.]Search in Google Scholar
[He Y., Song M., Zhang Y., Li X., Song Z. (2016). Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by Staphylococcus aureus. BMC Genomics, 17: 565.]Search in Google Scholar
[Huang D.W., Sherman B.T., Lempicki R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocol, 4: 44–57.]Search in Google Scholar
[Jensen K., Günther J., Talbot R., Petzl W., Zerbe H. (2013). Escherichia coli- and Staphylococcus aureus-induced mastitis differentially modulate transcriptional responses in neighbouring uninfected bovine mammary gland quarters. BMC Genomics, 14: 36.]Search in Google Scholar
[Karthikeyan A., Radhika G., Aravindhakshan T.V., Anilkumar K. (2016). Expression profiling of innate immune genes in milk somatic cells during subclinical mastitis in crossbred dairy cows. Anim. Biotechnol., 27: 303–309.]Search in Google Scholar
[Khan M.Z., Khan A., Xiao J., Ma J., Ma Y., Chen T., Shao D., Cao Z. (2020). Overview of research development on the role of NF-κB signaling in mastitis. Animals, 10: 1625.]Search in Google Scholar
[Lee D., Redfern O., Orengo C. (2007). Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol., 8: 995–1005.]Search in Google Scholar
[Lu X., Yarbrough W.G. (2015). Negative regulation of RelA phosphorylation: Emerging players and their roles in cancer. Cytokine Growth Factor Rev., 26: 7–13.]Search in Google Scholar
[Lutzow Y.C.S., Donaldson L., Gray C.P., Vuocolo T., Pearson R.D. (2008). Identification of immune genes and proteins involved in the response of bovine mammary tissue to Staphylococcus aureus infection. BMC Vet. Res., 4: 18.]Search in Google Scholar
[Ogorevc J., Kunej T., Razpet A., Dovc P. (2009). Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim. Genet., 40: 832–851.]Search in Google Scholar
[Scheffler M., Bos M., Gardizi M., König K., Michels S. (2015). PIK-3CA mutations in non-small cell lung cancer (NSCLC): Genetic heterogeneity, prognostic impact and incidence of prior malignancies. Oncotarget, 6: 1315–1326.]Search in Google Scholar
[Sharifi S., Pakdel A., Ebrahimi M., Reecy J.M., Fazeli Farsani S., Ebrahimie E. (2018). Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle. PLoS One, 13: e0191227.]Search in Google Scholar
[Sharifi S., Pakdel A., Ebrahimie E., Aryan Y., Zefrehee M.G., Reecy J.M. (2019). Prediction of key regulators and downstream targets of E. coli induced mastitis. J. Appl. Genet., 60: 367–373.]Search in Google Scholar
[Song M., He Y., Zhou H., Zhang Y., Li X. (2016). Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Sci. Rep., 6: 1–15.]Search in Google Scholar
[Sousa S.A., Leitão J.H., Martins R.C., Sanches J.M., Suri J.S. (2016). Bioinformatics applications in life sciences and technologies. Biomed Res. Int., 1–2.10.1155/2016/3603827487033527274986]Search in Google Scholar
[Spaan A.N., Surewaard J., Nijland R., van Strijp G. (2013). Neutrophils versus Staphylococcus aureus: A biological tug of war. Annu. Rev. Microbiol., 67: 629–650.]Search in Google Scholar
[Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D. (2015). Protein-protein interaction networks, integrated over the tree of life. Nucl. Acid. Res., 43: D447–D452.]Search in Google Scholar
[Tao W., Mallard B. (2007). Differentially expressed genes associated with Staphylococcus aureus mastitis of Canadian Holstein cows. Vet. Immunol. Immunopathol., 120: 201–211.]Search in Google Scholar
[Thompson-Crispi K., Atalla H., Miglior F., Mallard B.A. (2014). Bovine mastitis: frontiers in immunogenetics. Front. Immunol., 5: 493.]Search in Google Scholar
[Tolone M., Larrondo C., Yáñez M., Newman S., Sardina T., Portolano B. (2016). Assessment of genetic variation for pathogen-specific mastitis resistance in Valle del Belice dairy sheep. BMC Vet. Res., 12: 158.]Search in Google Scholar
[Wang X.G., Huang J.M., Feng M.Y., Ju Z.H., Wang C.F. (2014). Regulatory mutations in the A2M gene are involved in the mastitis susceptibility in dairy cows. Anim. Genet., 4: 28–37.]Search in Google Scholar
[Wang X., Ma P., Liu J., Zhang Q., Zhang Y. (2015). Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility. BMC Genet., 16: 111.]Search in Google Scholar
[Welderufael B.G., Løvendahl P., de Koning D.J., Janss L.L.G., Fikse W.F. (2018). Genome-wide association study for susceptibility to and recoverability from mastitis in Danish Holstein cows. Front. Genet., 9: 141.]Search in Google Scholar
[Wiggans G.R., Cole J.B., Hubbard S.M., Sonstegard T.S. (2017). Genomic selection in dairy cattle: The USDA experience. Annu. Rev. Anim. Biosci., 5: 309–327.]Search in Google Scholar
[Wu J., Li L., Sun Y., Huang S., Tang J. (2015). Altered molecular expression of the TLR4/NF-κB signaling pathway in mammary tissue of Chinese Holstein cattle with mastitis. PLoS One, 10: e0118458.]Search in Google Scholar
[Younis S., Javed Q., Blumenberg M. (2016). Meta-analysis of transcriptional responses to mastitis-causing Escherichia coli. PLoS One, 11: e0148562.]Search in Google Scholar
[Yuan Z., Li J., Zhang L., Gao X.H.J., Gao H.J. (2012). Investigation on BRCA1 SNPs and its effects on mastitis in Chinese commercial cattle. Gene, 505: 190–194.]Search in Google Scholar
[Yuan Z., Li J., Gao X., Xu S. (2013). SNPs identification and its correlation analysis with milk somatic cell score in bovine MBL1 gene. Mol. Biol. Rep., 40: 7–12.]Search in Google Scholar