Accès libre

Effects of Different Salinity Levels on Water Quality, Growth Performance and Body Composition of Pacific White Shrimp (Litopenaeus vannamei Boone, 1931) Cultured in a Zero Water Exchange Heterotrophic System

À propos de cet article

Citez

Abbaszadeh A., Yavari V., Hoseini S.J., Nafisi M., Torfi Mozanzadeh M.(2019). Effects of different carbon sources and dietary protein levels in a biofloc system on growth performance, immune response against white spot syndrome virus infection and cathepsin L gene expression of Litopenaeus vannamei. Aquacult. Res., 50: 1162–1176.10.1111/are.13991Search in Google Scholar

Ahmad I., Verma A.K., Babitha Rani A.M., Rathore G., Saharan N., Gora A.H.(2016). Growth, non-specific immunity and disease resistance of Labeorohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457: 61–67.10.1016/j.aquaculture.2016.02.011Search in Google Scholar

AOAC(2005). Official methods of analysis. Association of Official Analytical Chemists, sINC., Arlington, Virginia, USA. P: 245.Search in Google Scholar

APHA(2005). American Water Works Association, Water Pollution Control Association. Standard Methods for the Examination of Water and Wastewater (21st edn). American Public Health Association, Washington, DC, USA.Search in Google Scholar

Avnimelech Y.(2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140–147.10.1016/j.aquaculture.2006.11.025Search in Google Scholar

Avnimelech Y.(2009). Biofloc Technology – A Practical Guide Book (1st edn), pp. 182. The World Aquaculture Society, Baton Rouge, LA, USA.Search in Google Scholar

Avnimelech Y., Kochba M.(2009). Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture, 287: 163–168.10.1016/j.aquaculture.2008.10.009Search in Google Scholar

Azim M.E., Little D.C.(2008). The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283: 29–35.10.1016/j.aquaculture.2008.06.036Search in Google Scholar

Brey T., Müller-Wiegmann C., Zittier Z.M., Hagen W.(2010). Body composition in aquatic organisms – a global data bank of relationships between mass, elemental composition and energy content. J. Sea Res., 64: 334–340.10.1016/j.seares.2010.05.002Search in Google Scholar

Briggs M., Funge-Smith S., Subasinghe R., Phillips M.(2004). Introductions and movement of Penaeus vannamei and Penaeus stylirostris in Asia and the Pacific. RAP publication 10: 92.Search in Google Scholar

Brosset P., Ménard F., Fromentin J.M., Bonhommeau S., Ulses C., Bourdeix J.H., Bigot J.L., Van Beveren E., Roos D., Saraux C.(2015). Influence of environmental variability and age on the body condition of small pelagic fish in the Gulf of Lions. Mar. Ecol. Prog. Ser., 529: 219–231.10.3354/meps11275Search in Google Scholar

Cheng K.M., Hu C.Q., Liu Y.N., Zheng S.X., Qi X.J.(2006). Effects of dietary calcium, phosphorus and calcium/phosphorus ratio on the growth and tissue mineralization of Litopenaeus vannamei reared in low-salinity water. Aquaculture, 251: 472–483.10.1016/j.aquaculture.2005.06.022Search in Google Scholar

Chu C., Lee D.(2004). Multiscale structures of biological flocs. Chem. Eng. Sci., 59: 1875–1883.10.1016/j.ces.2004.01.040Search in Google Scholar

Correia A.D., Costa M.H., Luis O.J., Livingstone D.R.(2003). Age-related changes in antioxidant enzyme activities, fatty acid composition and lipid peroxidation in whole body Gammarus locusta (Crustacea: Amphipoda). J.Exp. Mar. Biol. Ecol., 289: 83–101.10.1016/S0022-0981(03)00040-6Search in Google Scholar

Crab R., Chielens B., Wille M., Bossier P., Verstraete W.(2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquacult. Res., 41: 559–567.10.1111/j.1365-2109.2009.02353.xSearch in Google Scholar

Crab R., Defoirdt T., Bossier P., Verstraete W.(2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356: 351–356.10.1016/j.aquaculture.2012.04.046Search in Google Scholar

Cuzon G., Lawrence A., Gaxiola G., Rosas C., Guillaume J.(2004). Nutrition of Litopenaeus vannamei reared in tanks or in ponds. Aquaculture, 235: 513–551.10.1016/j.aquaculture.2003.12.022Search in Google Scholar

De Schryver P., Verstraete W.(2009). Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresour. Technol., 100: 1162–1167.10.1016/j.biortech.2008.08.043Search in Google Scholar

Decamp O., Cody J., Conquest L., Delanoy G., Tacon A.G.(2003). Effect of salinity on natural community and production of Litopenaeus vannamei (Boone), within experimental zerowater exchange culture systems. Aquacult. Res., 34: 345–355.10.1046/j.1365-2109.2003.00842.xSearch in Google Scholar

Diaz F., Farfan C., Sierra E., Re A.D.(2001). Effects of temperature and salinity fluctuation on the ammonium excretion and osmoregulation of juveniles of Penaeus vannamei, Boone. Mar. Fresh W. Behav. Phy., 34: 93–104.10.1080/10236240109379062Search in Google Scholar

Ekasari J., Crab R., Verstraete W.(2010). Primary nutritional content of bio-flocs cultured with different organic carbon sources and salinity. Hayati J. Biosci., 17: 125–130.10.4308/hjb.17.3.125Search in Google Scholar

Emerenciano M., Ballester E.L., Cavalli R.O., Wasielesky W.(2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeusbrasiliensis (Latreille, 1817). Aquacult. Res., 43: 447–457.10.1111/j.1365-2109.2011.02848.xSearch in Google Scholar

Emerenciano M., Cuzon G., Arévalo M., Miquelajauregui M.M., Gaxiola G.(2013a). Effect of short-term fresh food supplementation on reproductive performance, biochemical composition, and fatty acid profile of Litopenaeus vannamei (Boone) reared under biofloc conditions. Aquac. Int., 21: 987–1007.10.1007/s10499-012-9607-4Search in Google Scholar

Emerenciano M., Gaxiola G., Cuzon G.(2013b). Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Biomass Now – Cultivation and Utilization, Matovic M.D. (ed.). InTech, Queen’s University, Belfast, Canada, pp. 301–328.10.5772/53902Search in Google Scholar

Esparza-Leal H.M., Xavier J.A.A., Wasielesky W.(2016). Performance of Litopenaeus vannamei postlarvae reared in indoor nursery tanks under biofloc conditions at different salinities and zero-water exchange. Aquac. Int., 24: 1435–1447.10.1007/s10499-016-0001-5Search in Google Scholar

Håkanson L.(2006). The relationship between salinity, suspended particulate matter and water clarity in aquatic systems. Ecol. Res., 21: 75–90.10.1007/s11284-005-0098-xSearch in Google Scholar

Hargreaves J.A.(2013). Biofloc production system for aquaculture. Southern Rregional Aquaculture Center Publication No. 4503.Search in Google Scholar

Izquierdo M., Forster I., Divakaran S., Conquest L., Decamp O., Tacon A.(2006). Effect of green and clear water and lipid source on survival, growth and biochemical composition of Pacific white shrimp Litopenaeus vannamei. Aquacult. Nutr., 12: 192–202.10.1111/j.1365-2095.2006.00385.xSearch in Google Scholar

Jaffer Y.D., Saraswathy R., Ishfaq M., Antony J., Bundela D.S., Sharma P.C.(2020). Effect of low salinity on the growth and survival of juvenile pacific white shrimp, Penaeus vannamei: A revival. Aquaculture, 515: 734561.10.1016/j.aquaculture.2019.734561Search in Google Scholar

Jannathulla R., Chitra V., Vasanthakumar D., Nagavel A., Ambasankar K., Muralidhar M., Dayal J.S.(2019). Effect of dietary lipid/essential fatty acid level on Pacific whiteleg shrimp, Litopenaeus vannamei (Boone, 1931) reared at three different water salinities – Emphasis on growth, hemolymph indices and body composition. Aquaculture, 513: 734405.10.1016/j.aquaculture.2019.734405Search in Google Scholar

Jayasankar V., Jasmani S., Nomura T., Nohara S., Do T.T., Wilder M.N.(2009). Low salinity rearing of the Pacific white shrimp Litopenaeus vannamei. JARQ-Jpn. Agr. Res. Q., 43: 345–350.10.6090/jarq.43.345Search in Google Scholar

Ju Z., Forster I., Conquest L., Dominy W.(2008). Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquacult. Nutr., 14: 533–543.10.1111/j.1365-2095.2007.00559.xSearch in Google Scholar

Kamrani E., Sharifinia M., Hashemi S.H.(2016). Analyses of fish community structure changes in three subtropical estuaries from the Iranian coastal waters. Mar. Biodivers., 46: 561–577.10.1007/s12526-015-0398-5Search in Google Scholar

Khanjani M.H., Sharifinia M.(2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquacult., https://doi.org/10.1111/raq.12412.10.1111/raq.12412Search in Google Scholar

Khanjani M.H., Sajjadi M., Alizadeh M., Sourinejad I.(2016). Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iran. J. Fish. Sci.,15: 1465–1484.Search in Google Scholar

Khanjani M.H., Sajjadi M.M., Alizadeh M., Sourinejad I.(2017). Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquacult. Res., 48: 1491–1501.10.1111/are.12985Search in Google Scholar

Khanjani M.H., Alizadeh M., Sharifinia M.(2020). Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquacult. Nutr., 26: 328–337.10.1111/anu.12994Search in Google Scholar

Kuhn D.D., Boardman G.D., Craig S.R., Flick Jr.G.J., Mc Lean E.(2008). Use of microbial flocs generated from tilapia effluent as a nutritional supplement for shrimp, Litopenaeus vannamei, in recirculating aquaculture systems. J. World Aquacult. Soc., 39: 72–82.10.1111/j.1749-7345.2007.00145.xSearch in Google Scholar

Kumlu M., Eroldogan O., Aktas M.(2000). Effects of temperature and salinity on larval growth, survival and development of Penaeus semisulcatus. Aquaculture, 188: 167–173.10.1016/S0044-8486(00)00330-6Search in Google Scholar

Laramore S., Laramore C.R., Scarpa J.(2001). Effect of low salinity on growth and survival of postlarvae and juvenile Litopenaeus vannamei. J. World Aquacult. Soc., 32: 385–392.10.1111/j.1749-7345.2001.tb00464.xSearch in Google Scholar

Lin Y.C., Chen J.C.(2001). Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. J. Eep. Mar. Biol. Ecol., 259: 109–119.10.1016/S0022-0981(01)00227-1Search in Google Scholar

Lin Y.C., Chen J.C.(2003). Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224: 193–201.10.1016/S0044-8486(03)00220-5Search in Google Scholar

Ma C.W., Cho Y.S., Oh K.H.(2009). Removal of pathogenic bacteria and nitrogens by Lactobacillus spp. JK-8 and JK-11. Aquaculture, 287: 266–270.10.1016/j.aquaculture.2008.10.061Search in Google Scholar

Mahanand S.S., Moulick S., Rao P.S.(2013). Optimum formulation of feed for rohu, Labeorohita (Hamilton), with biofloc as a component. Aquac. Int., 21: 347–360.10.1007/s10499-012-9557-xSearch in Google Scholar

MaicáP.F., de Borba M.R., Wasielesky Jr.W.(2012). Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-waterexchange super-intensive system. Aquacult. Res., 43: 361–370.10.1111/j.1365-2109.2011.02838.xSearch in Google Scholar

MaicáP.F., Borba M.R.d., Martins T.G., Wasielesky J.W.(2014). Effect of salinity on performance and body composition of Pacific white shrimp juveniles reared in a super-intensive system. Rev. Bras. Zootec., 43: 343–350.10.1590/S1516-35982014000700001Search in Google Scholar

Martins G.B., Tarouco F., Rosa C.E., Robaldo R.B.(2017). The utilization of sodium bicarbonate, calcium carbonate or hydroxide in biofloc system: water quality, growth performance and oxidative stress of Nile tilapia (Oreochromis niloticus). Aquaculture, 468: 10–17.10.1016/j.aquaculture.2016.09.046Search in Google Scholar

Mc Abee B., Browdy C., Rhodes R., Stokes A.(2003). The use of greenhouse-enclosed raceway systems for the superintensive production of pacific white shrimp Litopenaeus vannamei in the United States. Global Aquaculture Advocate, 6: 40–43.Search in Google Scholar

Mc Graw W., Davis D., Teichert-Coddington D., Rouse D.(2002). Acclimation of Litopenaeusvannamei postlarvae to low salinity: influence of age, salinity endpoint, and rate of salinity reduction. J. World Aquacult. Soc., 33: 78–84.10.1111/j.1749-7345.2002.tb00481.xSearch in Google Scholar

Mishra J.K., Samocha T.M., Patnaik S., Speed M., Gandy R.L., Ali A.M.(2008). Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquac. Eng., 38: 215.10.1016/j.aquaeng.2007.10.003Search in Google Scholar

MOOPAM(1999). Manual of oceanographic observations and pollutant analysis methods. ROPME. Kuwait 1, 20.Search in Google Scholar

Mu Y., Fang W., Shuanglin D., Shaoshuai D., Changbo Z.(2005). Effects of salinity fluctuation in different ranges on the intermolt period and growth of juvenile Fenneropenaeus chinensis. Acta Ocenol. Sin., 24: 141–147.Search in Google Scholar

Perez-Velazquez M., González-Félix M.L., Gómez-Jiménez S., Davis D.A., Miramontes-Higuera N.(2008). Nitrogen budget for a low-salinity, zero-water exchange culture system: II. Evaluation of isonitrogenous feeding of various dietary protein levels to Litopenaeus vannamei (Boone). Aquacult. Res., 39: 995–1004.10.1111/j.1365-2109.2008.01971.xSearch in Google Scholar

Ponce-Palafox J., Martinez-Palacios C.A., Ross L.G.(1997). The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture, 157: 107–115.10.1016/S0044-8486(97)00148-8Search in Google Scholar

Ray A.J., Lewis B.L., Browdy C.L., Leffler J.W.(2010). Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimalexchange, superintensive culture systems. Aquaculture, 299: 89–98.10.1016/j.aquaculture.2009.11.021Search in Google Scholar

Saoud I., Davis D.(2005). Effects of betaine supplementation to feeds of Pacific white shrimp Litopenaeus vannamei reared at extreme salinities. N. Am. J. Aquacult., 67: 351–353.10.1577/A05-005.1Search in Google Scholar

Saoud I.P., Davis D.A., Rouse D.B.(2003). Suitability studies of inland well waters for Litopenaeus vannamei culture. Aquaculture, 217: 373–383.10.1016/S0044-8486(02)00418-0Search in Google Scholar

Serra F.P., Gaona C.A., Furtado P.S., Poersch L.H., Wasielesky W.(2015). Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei. Aquac. Int., 23: 1325–1339.10.1007/s10499-015-9887-6Search in Google Scholar

Sharifinia M.(2015). Macroinvertebrates of the Iranian running waters: a review. Acta Limnol. Bras., 27: 356–369.10.1590/S2179-975X1115Search in Google Scholar

Sharifinia M., Penchah M.M., Mahmoudifard A., Gheibi A., Zare R.(2015). Monthly variability of chlorophyll-α concentration in Persian Gulf using remote sensing techniques. Sains Malays., 44: 387–397.10.17576/jsm-2015-4403-10Search in Google Scholar

Sharifinia M., Taherizadeh M., Namin J.I., Kamrani E.(2018). Ecological risk assessment of trace metals in the surface sediments of the Persian Gulf and Gulf of Oman: evidence from subtropical estuaries of the Iranian coastal waters. Chemosphere, 191: 485–493.10.1016/j.chemosphere.2017.10.077Search in Google Scholar

Sharifinia M., Afshari Bahmanbeigloo Z., Smith Jr.W.O., Yap C.K., Keshavarzifard M.(2019). Prevention is better than cure: Persian Gulf biodiversity vulnerability to the impacts of desalination plants. Glob. Change Biol., doi: 10.1111/gcb.14808(ja).10.1111/gcb.14808Search in Google Scholar

Sowers A.D., Gatlin D.M., Young S.P., Isely J.J., Browdy C.L., Tomasso J.R.(2005). Responses of Litopenaeus vannamei (Boone) in water containing low concentrations of total dissolved solids. Aquacult. Res., 36: 819–823.10.1111/j.1365-2109.2005.01270.xSearch in Google Scholar

Tacon A., Cody J., Conquest L., Divakaran S., Forster I., Decamp O.(2002). Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquacult. Nutr., 8: 121–137.10.1046/j.1365-2095.2002.00199.xSearch in Google Scholar

Timmons M.B., Ebeling J.M., Wheaton F.W., Summerfelt S.T., Vinci B.J.(2002). Recirculating aquaculture systems. (2nd edition), Caruga Aqua Ventures, New York, USA.Search in Google Scholar

Van Wyk P., Scarpa J.(1999). Water quality requirements and management. In: Farming Marine Shrimp in Recirculating Freshwater Systems. Florida Department of Agriculture and Consumer Services, Tallahassee, FL, USA, 128–138.Search in Google Scholar

Wang L.U., Chen J.C.(2005). The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels. Fish and Shellfish Immunol., 18: 269–278.10.1016/j.fsi.2004.07.008Search in Google Scholar

Wasielesky W., Atwood H., Stokes A., Browdy C.L.(2006). Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258: 396–403.10.1016/j.aquaculture.2006.04.030Search in Google Scholar

Wasielesky W., Froes C., Fóes G., Krummenauer D., Lara G., Poersch L.(2013). Nursery of Litopenaeus vannamei reared in a biofloc system: the effect of stocking densities and compensatory growth. J. Shellfish Res., 32: 799–806.10.2983/035.032.0323Search in Google Scholar

Weiss R.F.(1970). The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Research and Oceanographic Abstracts. Elsevier, pp. 721–735.10.1016/0011-7471(70)90037-9Search in Google Scholar

Xu W.J., Pan L.Q.(2012). Effects of bioflocs on growth performance digestive enzyme activity and body composition of juvenik Lipoenaeus wannamei in zero-water exchange tanks manipulating C/N ratio in feed. Agriculture, 356: 147–152.10.1016/j.aquaculture.2012.05.022Search in Google Scholar

Young B., Walker B., Dixon A., Walker V.(1989). Physiological adaptation to the environment. J. Anim. Sci., 67: 2426–2432.10.2527/jas1989.6792426xSearch in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine