À propos de cet article

Citez

Abu Eid R., Landini G. (2003). Quantification of the global and local complexity of the epithelialconnective tissue interface of normal, dysplastic, and neoplastic oral mucosae using digital imaging. Pathol. Res. Pract., 199: 475-482. Search in Google Scholar

Ahmadizadeh M., Esmailpoor M., Goodarzi Z. (2013). Effect of phenobarbital on chloramphenicol- induced toxicity in rat liver and small intestine. Iran J. Basic Med. Sci., 16: 1282-1285. Search in Google Scholar

Berendsen B., Stolker L.,de Jong J., Nielen M., Tserendorj E., Sodnomdar- jaa R., Cannavan A., Elliott C. (2010). Evidence of natural occurrence of the banned antibiotic chloramphenicol in herbs and grass. Anal. Bioanal. Chem., 397: 1955-1963. Search in Google Scholar

Brady N.C., Weil R.R. (2002). The nature and properties of soils. Upper Saddle River, USA, Prentice Hall, 13th ed., 960 pp. Search in Google Scholar

Cannon M., Harford S., Davies J.A. (1990). Acomparative study on the inhibitory actions of chloramphenicol, thiamphenicol and some fluorinated derivatives. J. Antimicrob. Chemother., 26: 307-317. Search in Google Scholar

Dhama K., Tiwari R., Khan R.U., Chakraborty S., Gopi M., Karthik K., Samina - than M., Desingu P., Sunkara L. (2014). Growth promoters and novel feed additives improving poultry production and health, bioactive principles and beneficial applications: the trends and advances -areview. Int. J. Pharm., 10: 129-159. Search in Google Scholar

EC (2010). Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off J EU, L15, 20.1.2010: 1-72. Search in Google Scholar

EFSA (2014). EFSA Panel on Contaminants in the Food Chain: Scientific Opinion on Chloramphenicol in food and feed. EFSA J., 12: 3907. Search in Google Scholar

EFSA and ECDC (2015 a). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA J., 13: 162. Search in Google Scholar

EFSAand ECDC (2015 b). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J., 13: 4329. Search in Google Scholar

EMA (2012). Sales of veterinary antimicrobial agents in 19 EU/EEAcountries in 2010. EMA/88728/2012, pp. 74. Search in Google Scholar

Friedman Y., Weisman Y., Avidar Y., Bogin E. (1998). The toxic effects of monensin and chloramphenicol on laying turkey breeder hens. Avian. Pathol., 27: 205-208. Search in Google Scholar

Gaikowski M.P., Wolf J.C., Schleis S.M., Tuomari D., Endris R.G. (2012). Safety of florenicol administered in feed to tilapia (Oreochromis sp.). Toxicol. Pathol., 41: 639-652. Search in Google Scholar

Greger M. (2007). The human/animal interface: emergence and resurgence of zoonotic infectious diseases. Crit. Rev. Microbiol., 33: 243-299. Search in Google Scholar

Grela E.R., Kowalczuk- Vasilev E., Klebaniuk R. (2013). Performance, pork quality and fatty acid composition of entire males, surgically castrated or immunocastrated males, and female pigs reared under organic system. Pol. J. Vet. Sci., 16: 107-114. Search in Google Scholar

Guardiola F.A., Cerezuela R., Meseguer J., Esteban M.A. (2012). Modulation of the immune parameters and expression of genes of gilthead seabream (Sparus aurata L.) by dietary administration of oxytetracycline. Aquacult., 334-337: 51-57. Search in Google Scholar

Hammerum A.M., Heuer O.E. (2009). Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Clin. Infec. Dis., 48: 916-921. Search in Google Scholar

Hanekamp J.C., Calabrese E.J. (2007). Chloramphenicol, Europeans legislation and hormesis - commentary. Dose Response, 5: 91-93. Search in Google Scholar

Khanna T., Friendship R., Dewey C., Weese J.S. (2007). Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers. Vet. Microbiol., 128: 298-303. Search in Google Scholar

Kisielinski K., Willis S., Prescher A., Klosterhalfen B., Schumpelick V. (2002). Asimple new method to calculate small intestine absorptive surface in the rat. Clin. Exp. Med., 2: 131-135. Search in Google Scholar

Lizard G., Fournel S., Genestier L., Dhedin N., Chaput C., Flacher M. Mutin M., Panaye G., Revillard J.P. (1995). Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis. Cytometry, 21: 275-283. Search in Google Scholar

Mehdizadeh S., Kazerani H.R., Jamshidi A. (2010). Screening of chloramphenicol residues in broiler chickens slaughtered in an industrial poultry abattoir in Mashhad. Iran. J. Vet. Sci. Technol., 2: 25-32. Search in Google Scholar

Nielsen I.R., Seim A., Bentzen N. (2013). Chloramphenicol eye drops in the treatment of conditions indicative of maxillary sinusitis. Tidsskr. Nor. Laegeforen., 133: 2146-2148. Search in Google Scholar

Nordkvist E., Zuidema T., Herbes R.G., Berendsen B.J.A. (2016). Occurrence of chloramphenicol in cereal straw in north-western Europe. Food Addit. Contam. Part A: Chem. Anal. Control. Expo. Risk. Assess., 33: 798-803. Search in Google Scholar

Phillips I., Casewell M., Cox T., De Groot B., Friis C., Jones R., Nightingale C., Preston R., Waddell J. (2004). Does the use of antibiotics in food animals posearisk to human health? Acritical review of published data. J. Antimicrob. Chemother., 53: 28-52. Search in Google Scholar

Samanidou V.F., Evaggelopoulou E.N. (2007). Analytical strategies to determine antibiotic residues in fish. J. Sep. Sci., 30: 2549-2569. Search in Google Scholar

Sanchez- Martínez J.G., Pérez- Castañeda R., Rábago-Castro J.L., Aguire -- Guzmán G., Vázquez- Sauceda M.L. (2008). Preliminary study on the effects on growth, condition, and feeding indexes in channel catfish, Ictalurus punctatus, after the prophylactic use of potassium permanganate and oxytetracycline. J. World Aquaculture Soc., 39: 664-670. Search in Google Scholar

Shalaby A.M., Khattab Y.A., Rahman A.M. (2006). Effects of garlic (Allium sativum) and chloramphenicol on growth performance, physiological parameters and survival of Nile tilapia (Oreochromis niloticus). J. Venom. Anim. Toxins. incl. Trop. Dis., 12: 172-201. Search in Google Scholar

Shea K.M. (2003). Antibiotic resistance: what is the impact of agricultural uses of antibiotics on children’s health? Pediatrics, 112: 253-258. Search in Google Scholar

Shen J., Xia X., Jiang H., Li C., Li J., Li X., Ding S. (2009). Determination of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry and porcine muscle and liver by gas chromatography-negative chemical ionization mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 877: 1523-1529. Search in Google Scholar

Shukla P., Bansode F.W., Singh R.K. (2013). Chloramphenicol toxicity:areview. J. Med. Med. Sci., 2: 1313-1316. Search in Google Scholar

Suvara S.K., Layton C., Bancroft J.D. (2013). Bancroft’s theory and practice of histological techniques. Edinburgh, UK, Churchill Livingstone, 7th ed., 654 pp. Search in Google Scholar

Śliwa E., Dobrowolski P., Tatara M.R., Piersiak T., Siwicki A., Rokita E., Pie- rzynowski S.G. (2009). Alpha-ketoglutarate protects the liver of piglets exposed during prenatal life to chronic excess of dexamethasone from metabolic and structural changes. J. Anim. Physiol. Anim. Nutr., 93: 192-202. Search in Google Scholar

Tajik H., Malekinejad H., Razavi-Rouhani S.M., Pajouhi M.R., Mahmoudi R., Haghnazari A. (2010). Chloramphenicol residues in chicken liver, kidney and muscle: Acomparison among the antibacterial residues monitoring methods of Four Plate Test, ELISAand HPLC. Food Chem. Toxicol., 48: 2464-2468. Search in Google Scholar

Tomaszewska E., Dobrowolski P., Puzio I. (2012). Postnatal administration of 2-oxoglutaric acid improves the intestinal barrier affected by the prenatal action of dexamethasone in pigs. Nutrition, 28: 190-196. Search in Google Scholar

Tomaszewska E., Dobrowolski P., Puzio I., Prost L., Kurlak P., Sawczuk P., Ba - dzian B., Hulas- Stasiak M., Kostro K. (2014). Acrylamide-induced prenatal programming intestine structure in guinea pig. J. Physiol. Pharmacol., 65: 107-115. Search in Google Scholar

Tomaszewska E., Winiarska- Mieczan A., Dobrowolski P. (2015 a). Hematological and serum biochemical parameters of blood in adolescent rats and histomorphological changes in the jejunal epithelium and liver after chronic exposure to cadmium and lead in the case of supplementation with green tea vs black, red or white tea. Exp. Toxicol. Pathol., 67: 331-339. Search in Google Scholar

Tomaszewska E., Winiarska- Mieczan A., Dobrowolski P. (2015 b). The lack of protective effects of tea supplementation on liver and jejunal epithelium in adult rats exposed to cadmium and lead. Environ. Toxicol. Pharmacol., 40: 708-714. Search in Google Scholar

Tomaszewska E., Dobrowolski P., Kwiecień M. (2017). Alterations in intestinal and liver histomorphology, and basal hematological and biochemical parameters in relation to different sources of dietary copper in adult rats. Ann. Anim. Sci., 17: 477-490. Search in Google Scholar

Yanovych D., Rydchuk M., Korobova O., Zasadna Z. (2013). Natural ways of antibiotics’ ingress into the products of animal origin. In: 6th International Symposium on Recent Advances in Food Analysis, Pulkrabová J., Tomaniová M., Nielen M., Hajšlová J. (eds). Institute of Chemical Technology, Prague, Czech Republic, p. 449. Search in Google Scholar

Yunis A.A. (1973). Chloramphenicol toxicity. In: Blood disorders due to drugs and other agents, Girdwood R.H. (ed.), Excerpta Medica, Amsterdam, Netherlands, pp. 107-126. Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine