À propos de cet article

Citez

Arriola K.G., Kim S.C., Staples C.R., Adesogan A.T. (2011). Effect of fibrolytic enzyme application to low- and high-concentrate diets on the performance of lactating dairy cattle. J. Dairy Sci., 94: 832-841.Search in Google Scholar

Bala P., Malik R., Srinivas B. (2009). Effect of fortifying concentrate supplement with fibrolytic enzymes on nutrient utilization, milk yield and composition in lactating goats. Anim. Sci. J., 80: 265-272.Search in Google Scholar

Beauchemin K.A., Colombatto D., Morgavi D.P., Yang W.Z. (2003). Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim Sci., 81: 37-47.Search in Google Scholar

Beguin P. (1983). Detection of cellulase activity in polyacrylamide gels using congo red-stained agar replicas. Anal. Biochem., 131: 333-336.Search in Google Scholar

Bhat M.K. (2000). Cellulases and related enzymes in biotechnology. Biotechnol. Adv., 18: 355-383.Search in Google Scholar

Blum H., Beier H., Gross H.J. (1987). Improved silver staining of plant-proteins, RNAand DNA in polyacrylamide gels. Electrophoresis, 8: 93-99.Search in Google Scholar

Bronnenmeier K., Kundt K., Riedel K., Schwarz W.H., Staudenbauer W.L. (1997). Structure of the Clostridium stercorarium gene cel Yencoding the exo-1,4-beta-glucanase Avicelase II. Microbiology, 143: 891-898.Search in Google Scholar

Clarke A.J., Drummelsmith J., Yaguchi M. (1997). Identification of the catalytic nucleophile in the cellulase from Schizophyllum commune and assignment of the enzyme to Family 5, subtype 5 of the glycosidases. FEBS Lett., 414: 359-361.Search in Google Scholar

Colombatto K.A., Beauchemin D. (2003). Aproposed methodology to standardize the determination of enzymic activities present in enzyme additives used in ruminant diets. Can. J. Anim. Sci., 83: 559-568.Search in Google Scholar

Dodia M.S., Rawal C.M., Bhimani H.G., Joshi R.H., Khare S.K., Singh S.P. (2008). Purification and stability characteristics of an alkaline serine protease fromanewly isolated Haloalkaliphilic bacterium sp AH-6. J. Ind. Microbiol. Biotechnol., 35: 121-131.Search in Google Scholar

Duan C.J., Feng J.X. (2010). Mining metagenomes for novel cellulase genes. Biotechnol. Lett., 32: 1765-1775.Search in Google Scholar

Ferrer M., Golyshina O.V., Chernikova T.N., Khachane A.N., Reyes- Duarte D., Dos Santos V., Strompl C., Elborough K., Jarvis G., Neef A., Yakimov M.M., Timmis K.N., Golyshin P.N. (2005). Novel hydrolase diversity retrieved fromametagenome library of bovine rumen microflora. Environ. Microbiol., 7: 1996-2010.Search in Google Scholar

Gal L., Pages S., Gaudin C., Belaich A., Reverbel - Leroy C., Tardif C., Belaich J.P. (1997). Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl. Environ. Microbiol., 63: 903-909.Search in Google Scholar

Hall J., Ali S., Surani M.A., Hazelwood G.P., Clark A.J., Simons J.P., Hirst B.H., Gilbert H.J. (1993). Manipulation of the repertoire of oligestive enzymes secreted into the gastrointestinal tract of transgenic mice. Nat. Biotechnol., 11: 376-379.Search in Google Scholar

Heussen C., Dowdle E.B. (1980). Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem., 102: 196-202.Search in Google Scholar

Kim D., Baik K., Park S., Kim S.-J., Shin T.-S., Jung S.-J., Oh M.-J., Seong C. (2009). Cellulase production from Pseudoalteromonas sp. NO3 isolated from the sea squirt Halocynthia rorentzi. J. Ind. Microbiol. Biotechnol., 36: 1375-1382.Search in Google Scholar

Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London), 227: 680-685.Miller G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31: 426-428.10.1038/227680a05432063Search in Google Scholar

Mo rgavi D., Beauchemin K., Nsereko V., Rode L., Mc Allister T., Iwaasa A., Wang Y., Yang W. (2001). Resistance of feed enzymes to proteolytic inactivation by rumen microorganisms and gastrointestinal proteases. J. Anim Sci., 79: 1621-1630.Search in Google Scholar

Najmudin S., Guerreiro C.I.P.D., Carvalho A.L., Prates J.A.M., Correia M.A.S., Alves V.D., Ferreira L.M.A., Romão M.J., Gilbert H.J., Bolam D.N., Fon- tes C.M.G.A. (2006). Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. J. Biol. Chem., 281: 8815-8828.Search in Google Scholar

O ’ Connor - Robison C.I., Nielsen B.D., Morris R. (2007). Cellulase supplementation does not improve the digestibility ofahigh-forage diet in horses. J. Equine Vet. Sci., 27: 535-538.Search in Google Scholar

Oakley B.R., Kirsch D.R., Morris N.R. (1980). Asimplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem., 105: 361-363.Search in Google Scholar

Percival Zhang Y.H., Himmel M.E., Mielenz J.R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv., 24: 452-481.Search in Google Scholar

Peters A., Lebzien P., Meyer U., Borchert U., Bulang M., Flachowsky G. (2010). Effect of exogenous fibrolytic enzymes on ruminal fermentation and nutrient digestion in dairy cows. Arch. Anim. Nutr., 64: 221-237.Search in Google Scholar

Tilley J.M.A., Terry R.A. (1963). Atwo-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc., 18: 104-111.Search in Google Scholar

Titi H.H., Tabbaa M.J. (2004). Efficacy of exogenous cellulase on digestibility in lambs and growth of dairy calves. Livest. Prod. Sci., 87: 207-214.Search in Google Scholar

Yang H.J., Xie C.Y. (2010). Assessment of fibrolytic activities of 18 commercial enzyme products and their abilities to degrade the cell wall fraction of corn stalks in in vitro enzymatic and ruminal batch cultures. Anim. Feed Sci. Technol., 159: 110-121.Search in Google Scholar

eISSN:
1642-3402
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine