This work is licensed under the Creative Commons Attribution 4.0 International License.
A. Alvino, G. Trombetti, and P.-L. Lions, On optimization problems with prescribed rearrangements, Nonlinear Anal. 13 (1989), no. 2, 185–220.AlvinoA.TrombettiG.LionsP.-L.On optimization problems with prescribed rearrangementsNonlinear Anal.1319892185220Search in Google Scholar
S. Biagi, S. Dipierro, E. Valdinoci, and E. Vecchi, Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), no. 5, 1611–1641.BiagiS.DipierroS.ValdinociE.VecchiE.Semilinear elliptic equations involving mixed local and nonlocal operatorsProc. Roy. Soc. Edinburgh Sect. A1512021516111641Search in Google Scholar
S. Biagi, S. Dipierro, E. Valdinoci, and E. Vecchi, A Hong–Krahn–Szegö inequality for mixed local and nonlocal operators, Math. Eng. 5 (2022), no. 1, Paper No. 014, 25 pp.BiagiS.DipierroS.ValdinociE.VecchiE.A Hong–Krahn–Szegö inequality for mixed local and nonlocal operatorsMath. Eng.520221Paper No. 014,25 ppSearch in Google Scholar
S. Biagi, S. Dipierro, E. Valdinoci, and E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Comm. Partial Differential Equations 47 (2022), no. 3, 585–629. DOI: 10.1080/03605302.2021.1998908.BiagiS.DipierroS.ValdinociE.VecchiE.Mixed local and nonlocal elliptic operators: regularity and maximum principlesComm. Partial Differential Equations472022358562910.1080/03605302.2021.1998908Open DOISearch in Google Scholar
S. Biagi, S. Dipierro, E. Valdinoci, and E. Vecchi, A Faber–Krahn inequality for mixed local and nonlocal operators, J. Anal. Math. 150 (2023), no. 2, 405–448.BiagiS.DipierroS.ValdinociE.VecchiE.A Faber–Krahn inequality for mixed local and nonlocal operatorsJ. Anal. Math.15020232405448Search in Google Scholar
L. Brasco, E. Lindgren, and E. Parini, The fractional Cheeger problem, Interfaces Free Bound. 16 (2014), no. 3, 419–458.BrascoL.LindgrenE.PariniE.The fractional Cheeger problemInterfaces Free Bound.1620143419458Search in Google Scholar
C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal. 15 (2016), no. 2, 657–699.BucurC.Some observations on the Green function for the ball in the fractional Laplace frameworkCommun. Pure Appl. Anal.1520162657699Search in Google Scholar
D. Chen and H. Li, Talenti's comparison theorem for Poisson equation and applications on Riemannian manifold with nonnegative Ricci curvature, J. Geom. Anal. 33 (2023), Paper No. 123, 20 pp. DOI: 10.1007/s12220-022-01162-0.ChenD.LiH.Talenti's comparison theorem for Poisson equation and applications on Riemannian manifold with nonnegative Ricci curvatureJ. Geom. Anal.332023Paper No. 123,20 pp10.1007/s12220-022-01162-0Open DOISearch in Google Scholar
Z.-Q. Chen, P. Kim, R. Song, and Z. Vondraček, Sharp Green function estimates forΔ+Δα2\Delta + {\Delta^{\frac{\alpha}{2}}}in C1, 1open sets and their applications, Illinois J. Math. 54 (2010), no. 3, 981–1024.ChenZ.-Q.KimP.SongR.VondračekZ.Sharp Green function estimates for
Δ+Δα2\Delta + {\Delta^{\frac{\alpha}{2}}}
in C1, 1 open sets and their applicationsIllinois J. Math.54201039811024
Z.-Q. Chen and T. Kumagai, A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diflusions with jumps, Rev. Mat. Iberoam. 26 (2010), no. 2, 551–589.ChenZ.-Q.KumagaiT.A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diflusions with jumpsRev. Mat. Iberoam.2620102551589Search in Google Scholar
V. Ferone and B. Volzone, Symmetrization for fractional elliptic problems: a direct approach, Arch. Ration. Mech. Anal. 239 (2021), no. 3, 1733–1770.FeroneV.VolzoneB.Symmetrization for fractional elliptic problems: a direct approachArch. Ration. Mech. Anal.2392021317331770Search in Google Scholar
V. Ferone and B. Volzone, Symmetrization for fractional nonlinear elliptic problems, Discrete Contin. Dyn. Syst. 43 (2023), no. 3–4, 1400–1419.FeroneV.VolzoneB.Symmetrization for fractional nonlinear elliptic problemsDiscrete Contin. Dyn. Syst.4320233–414001419Search in Google Scholar
H. Hajaiej and K. Perera, Ground state and least positive energy solutions of elliptic problems involving mixed fractional p-Laplacians, Differential Integral Equations 35 (2022), no. 3–4, 173–190.HajaiejH.PereraK.Ground state and least positive energy solutions of elliptic problems involving mixed fractional p-LaplaciansDifferential Integral Equations3520223–4173190Search in Google Scholar
S. Kesavan, Some remarks on a result of Talenti, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 3, 453–465.KesavanS.Some remarks on a result of TalentiAnn. Scuola Norm. Sup. Pisa Cl. Sci. (4)1519883453465Search in Google Scholar
T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist. 17, Acta Univ. Wratislav. No. 2029 (1997), no. 2, 339–364.KulczyckiT.Properties of Green function of symmetric stable processesProbab. Math. Statist.17Acta Univ. Wratislav. No. 202919972339364Search in Google Scholar
E.H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 2001.LiebE.H.LossM.AnalysisGraduate Studies in Mathematics, 14,American Mathematical SocietyProvidence, RI2001Search in Google Scholar
P.-L. Lions, Quelques remarques sur la symétrisation de Schwartz, in: H. Brézis, J.-L. Lions (eds.), Nonlinear Partial Diflerential Equations and Their Applications. Collège de France Seminar. Vol. I, Res. Notes in Math., 53, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981, pp. 308–319.LionsP.-L.Quelques remarques sur la symétrisation de Schwartzin:BrézisH.LionsJ.-L.(eds.),Nonlinear Partial Diflerential Equations and Their Applications. Collège de France Seminar. Vol. IRes. Notes in Math., 53,Pitman (Advanced Publishing Program)Boston, Mass.-London1981308319Search in Google Scholar
P. Mironescu and W. Sickel, A Sobolev non embedding, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), no. 3, 291–298.MironescuP.SickelW.A Sobolev non embeddingAtti Accad. Naz. Lincei Rend. Lincei Mat. Appl.2620153291298Search in Google Scholar
G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 4, 697–718.TalentiG.Elliptic equations and rearrangementsAnn. Scuola Norm. Sup. Pisa Cl. Sci. (4)319764697718Search in Google Scholar