Accès libre

An Alternative Equation for Generalized Polynomials of Degree Two

 et   
26 oct. 2023
À propos de cet article

Citez
Télécharger la couverture

J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia Math. Appl., 31, Cambridge University Press, Cambridge–New York–New Rochelle–Melbourne–Sydney, 1989.Search in Google Scholar

Z. Boros and W. Fechner, An alternative equation for polynomial functions, Aequationes Math. 89 (2015), no. 1, 17–22.Search in Google Scholar

Z. Boros, W. Fechner, and P. Kutas, A regularity condition for quadratic functions involving the unit circle, Publ. Math. Debrecen 89 (2016), no. 3, 297–306.Search in Google Scholar

Z. Boros and R. Menzer, An alternative equation for generalized monomials, Aequationes Math. 97 (2023), no. 1, 113–120. DOI: 10.1007/s00010-022-00917-ySearch in Google Scholar

Z. Kominek, L. Reich, and J. Schwaiger, On additive functions fulfilling some additional condition, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 35–42.Search in Google Scholar

M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, second edition, Birkhäuser Verlag, Basel–Boston–Berlin, 2009.Search in Google Scholar

P. Kutas, Algebraic conditions for additive functions over the reals and over finite fields, Aequationes Math. 92 (2018), no. 3, 563–575.Search in Google Scholar

L. Székelyhidi, Regularity properties of polynomials on groups, Acta Math. Hungar. 45 (1985), no. 1-2, 15–19.Search in Google Scholar

Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales