Accès libre

Construction of Regular Non-Atomic Strictly-Positive Measures in Second-Countable Non-Atomic Locally Compact Hausdorff Spaces

  
22 mars 2022
À propos de cet article

Citez
Télécharger la couverture

This paper presents a constructive proof of the existence of a regular non-atomic strictly-positive measure on any second-countable non-atomic locally compact Hausdorff space. This construction involves a sequence of finitely-additive set functions defined recursively on an ascending sequence of rings of subsets with a set function limit that is extendable to a measure with the desired properties. Non-atomicity of the space provides a meticulous way to ensure that the set function limit is σ-additive.

Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales