Accès libre

Design Research of 600 M Scale Concrete Arch Bridge Based on Mathematical Optimization Method

À propos de cet article

Citez

Lu X, Lin K, Li C, et al. New analytical calculation models for compressive arch action in reinforced concrete structures. Engineering Structures 2018(168):721–735. doi.org/10.1016/j.engstruct.2018.04.097.LuXLinKLiCNew analytical calculation models for compressive arch action in reinforced concrete structuresEngineering Structures2018168721735doi.org/10.1016/j.engstruct.2018.04.09710.1016/j.engstruct.2018.04.097Search in Google Scholar

Bastidas-Arteaga E. Reliability of Reinforced Concrete Structures Subjected to Corrosion-Fatigue and Climate Change. International Journal of Concrete Structures and Materials 2018(12):1–13. doi.10.1186/s40069-018-0235-x.Bastidas-ArteagaEReliability of Reinforced Concrete Structures Subjected to Corrosion-Fatigue and Climate ChangeInternational Journal of Concrete Structures and Materials20181211310.1186/s40069-018-0235-xOpen DOISearch in Google Scholar

Singh NK, Rai B. A Statistical Study to Investigate the Efficiency of Steel and Polypropylene Fiber in Enhancing the Durability Properties of Concrete Composites. Civil Engineering Journal 2018(06):1254–1270. doi.org/10.28991/cej-0309171.SinghNKRaiBA Statistical Study to Investigate the Efficiency of Steel and Polypropylene Fiber in Enhancing the Durability Properties of Concrete CompositesCivil Engineering Journal20180612541270doi.org/10.28991/cej-030917110.28991/cej-0309171Search in Google Scholar

Kang C, Schneider S, Wenner M, et al. Development of design and construction of high-speed railway bridges in Germany. Engineering Structures 2018(2): 184–196. doi.org/10.1016/j.engstruct.2018.02.059.KangCSchneiderSWennerMDevelopment of design and construction of high-speed railway bridges in GermanyEngineering Structures20182184196doi.org/10.1016/j.engstruct.2018.02.05910.1016/j.engstruct.2018.02.059Search in Google Scholar

Zhou Q, Zhou SX, Li XQ, et al. Study on Construction Mechanical Properties of Cantilever-Pouring Concrete Arch Bridge. Journal of chongqing jiaotong university (natural science) 2018(7):9–18. doi.10.3969/j.issn.1674-0696.2018.07.02.ZhouQZhouSXLiXQStudy on Construction Mechanical Properties of Cantilever-Pouring Concrete Arch BridgeJournal of chongqing jiaotong university (natural science)2018791810.3969/j.issn.1674-0696.2018.07.02Open DOISearch in Google Scholar

Moazam A, Hasani N, Yazdani M. Three-dimensional modelling for seismic assessment of plain concrete arch bridges. Civil Engineering 2018(3):1–36. doi.10.1680/jcien.17.00048.MoazamAHasaniNYazdaniMThree-dimensional modelling for seismic assessment of plain concrete arch bridgesCivil Engineering2018313610.1680/jcien.17.00048Open DOISearch in Google Scholar

Sun H, Zhu J, Ham S. Automated Acoustic Scanning System for Delamination Detection in Concrete Bridge Decks. Journal of Bridge Engineering 2018(6): 04018027-1–04018027-9. doi.10.1061/(ASCE)BE.1943-5592.0001237SunHZhuJHamSAutomated Acoustic Scanning System for Delamination Detection in Concrete Bridge DecksJournal of Bridge Engineering2018604018027-104018027-910.1061/(ASCE)BE.1943-5592.0001237Open DOISearch in Google Scholar

Hiasa S, Birgul R, Matsumoto M, et al. Experimental and Numerical Studies for Suitable Infrared Thermography Implementation on Concrete Bridge Decks. Measurement 2018(121):144–159. doi.org/10.1016/j.measurement.2018.02.019.HiasaSBirgulRMatsumotoMExperimental and Numerical Studies for Suitable Infrared Thermography Implementation on Concrete Bridge DecksMeasurement2018121144159doi.org/10.1016/j.measurement.2018.02.01910.1016/j.measurement.2018.02.019Search in Google Scholar

Wei JG, Chen BC. Application and research progress of long span concrete arch bridges abroad. World Bridge 2009(2):4–8. 1671-7767(2009)02-0004-05.WeiJGChenBCApplication and research progress of long span concrete arch bridges abroadWorld Bridge20092481671-7767(2009)02-0004-05Search in Google Scholar

Zhang SY, Zhang RD, Jia Y, et al. Model Test Study on Long-Span Railway Concrete Arch Bridge with Rigid Skeleton. Journal of Southwest Jiaotong University 2017(6): 1088–1096. doi.10.3969/j.issn.0258-2724.2017.06.008.ZhangSYZhangRDJiaYModel Test Study on Long-Span Railway Concrete Arch Bridge with Rigid SkeletonJournal of Southwest Jiaotong University201761088109610.3969/j.issn.0258-2724.2017.06.008Open DOISearch in Google Scholar

Mészöly T, Randl N. Shear behavior of fiber-reinforced ultra-high performance concrete beams. Engineering Structures 2018(4):119–127. doi.org/10.1016/j.engstruct.2018.04.075.MészölyTRandlNShear behavior of fiber-reinforced ultra-high performance concrete beamsEngineering Structures20184119127doi.org/10.1016/j.engstruct.2018.04.07510.1016/j.engstruct.2018.04.075Search in Google Scholar

Xie YZ. Structural Study of Arch Bridge with a Span of 600m Part I: Trial Design. Applied Mechanics & Materials 2011(138–139): 289–293. doi:/10.4028/www.scientific.net/AMM.138-139.289XieYZStructural Study of Arch Bridge with a Span of 600m Part I: Trial DesignApplied Mechanics & Materials2011138–139289293doi:/10.4028/www.scientific.net/AMM.138-139.28910.4028/www.scientific.net/AMM.138-139.289Search in Google Scholar

Xie YZ. Structure Study of Arch Bridge with a Span of 600m Part II: Measures to Improve Mechanical Performance. Applied Mechanics & Materials 2012(138–139): 294–298. doi.10.4028/www.scientific.net/AMM.138-139.294.XieYZStructure Study of Arch Bridge with a Span of 600m Part II: Measures to Improve Mechanical PerformanceApplied Mechanics & Materials2012138–139294298doi.10.4028/www.scientific.net/AMM.138-139.29410.4028/www.scientific.net/AMM.138-139.294Search in Google Scholar

Capellán G, Merino E, Sacristán M, et al. Recent Developments in Concrete Arch Bridges. High Tech Concrete: Where Technology and Engineering Meet 2018(298): 2621–2628. https://doi.org/10.1007/978-3-319-59471-2_298.CapellánGMerinoESacristánMRecent Developments in Concrete Arch BridgesHigh Tech Concrete: Where Technology and Engineering Meet201829826212628https://doi.org/10.1007/978-3-319-59471-2_29810.1007/978-3-319-59471-2_298Search in Google Scholar

Cheng BC, Huang QW. Study on the test design of 600m span concrete arch bridge. Chinese and foreign highway 2006(1):80–82. 1671-2579(2006)01-0080-03.ChengBCHuangQWStudy on the test design of 600m span concrete arch bridgeChinese and foreign highway2006180821671-2579(2006)01-0080-03.Search in Google Scholar

Xie CZ, Lin JQ. Analysis of Influencing Factors on Static Wind Stability of Super-large Span Reinforced Concrete Arch Bridge. Western China Communication Science and Technology 2017(6):88–91. doi.10.13282/j.cnki.wccst.2017.06.022XieCZLinJQAnalysis of Influencing Factors on Static Wind Stability of Super-large Span Reinforced Concrete Arch BridgeWestern China Communication Science and Technology20176889110.13282/j.cnki.wccst.2017.06.022Open DOISearch in Google Scholar

Fulin S, Airong L, Rui S, et al. Study of seismic performance of leaning-type arch bridge[C]// International Conference on Mechanic Automation and Control Engineering. IEEE, 2010.FulinSAirongLRuiSStudy of seismic performance of leaning-type arch bridge[C]International Conference on Mechanic Automation and Control EngineeringIEEE2010Search in Google Scholar

Weiher H, Praus A, Runtemund K. Strengthening of 100 Year Old Concrete Arch Bridge “Kuhbrücke/Hildesheim”. High Tech Concrete: Where Technology and Engineering Meet (2018): 2004–2010. doi.org/10.1007/978-3-319-59471-2_229WeiherHPrausARuntemundKStrengthening of 100 Year Old Concrete Arch Bridge “Kuhbrücke/Hildesheim”High Tech Concrete: Where Technology and Engineering Meet201820042010doi.org/10.1007/978-3-319-59471-2_22910.1007/978-3-319-59471-2_229Search in Google Scholar

Cheng BC, Wei JA, Zhou J, et al. Application of concrete-filled steel tube arch bridges in china:current status and prospects. China civil engineering journal 2017(6):50–61. doi.10.15951/j.tmgcxb.2017.06.006.ChengBCWeiJAZhouJApplication of concrete-filled steel tube arch bridges in china:current status and prospectsChina civil engineering journal20176506110.15951/j.tmgcxb.2017.06.006Open DOISearch in Google Scholar

Hajali M, Jalali A, Maleki A. Effects of Near Fault and Far Fault Ground Motions on Nonlinear Dynamic Response and Seismic Improvement of Bridges. Civil Engineering Journal 2018(6): 1456–1466. doi.org/10.28991/cej-0309186.HajaliMJalaliAMalekiAEffects of Near Fault and Far Fault Ground Motions on Nonlinear Dynamic Response and Seismic Improvement of BridgesCivil Engineering Journal2018614561466doi.org/10.28991/cej-030918610.28991/cej-0309186Search in Google Scholar

Cao Y, Zhao N, Yu FR, et al. Optimization or Alignment: Secure Primary Transmission Assisted by Secondary Networks. IEEE Journal on Selected Areas in Communications 2018:1–1. doi.10.1109/JSAC.2018.2824360.CaoYZhaoNYuFROptimization or Alignment: Secure Primary Transmission Assisted by Secondary NetworksIEEE Journal on Selected Areas in Communications20181110.1109/JSAC.2018.2824360Open DOISearch in Google Scholar

Chen YS, Lin YD. Novel subspace method for frequencies estimation of two sinusoids with applications to vital signals. Iet Signal Processing 2018(11): 1114–1121. doi.10.1049/iet-spr.2016.0702.ChenYSLinYDNovel subspace method for frequencies estimation of two sinusoids with applications to vital signalsIet Signal Processing2018111114112110.1049/iet-spr.2016.0702Open DOISearch in Google Scholar

eISSN:
2444-8656
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics