À propos de cet article

Citez

Introduction

The ability to “ride” along a three-dimensional space curve and illustrate the properties of the curve, such as curvature and torsion, would be a great asset to Mathematicians. The classic Serret-Frenet frame provides such ability. The tangent normal, and binormal vector fields are called the Frenet–Serret frame or T NB frame. But, the curve might not be continuous at some points, which is undefined when the second derivative of the curve vanishes [9]. In 1975, Richard Lawrence Bishop first introduced the parallel frame as a new frame which is well defined even if the curve has vanishing second derivative, then the parallel frame came to be called the Bishop frame [8, 9, 10]. Bishop frame contains the tangential vector field T and two normal vector fields N1 and N2. The Bishop frame may have applications in the area of Biology and Computer Graphics. For example, it may be possible to compute information about the shape of sequences of DNA using a curve defined by the Bishop frame. It also provides a new way to control virtual cameras in computer animation [12]. Some applications of the Bishop frames in Minkowski spaces can be found in [3, 4].

In differential geometry, a general helix or a curve of constant slope in Euclidean 3-space E3 is defined in such a way that the tangent makes a constant angle with a fixed direction. A classical result stated by M. A. Lancret in 1802 and first proved by B. de Saint Venant in 1845, [5, 7, 16, 18]. For helical structures in nature, helices arise in nano-springs, carbon nano-tubes, DNA double and collagen triple helix, lipid bilayers, bacterial flagella in salmonella and escherichia coli, aerial hyphae in actinomycetes, bacterial shape in spirochetes, horns, tendrils, vines, screws, springs, helical staircases and seashells [1, 2, 11]. Helical structures are used in fractal geometry, for instance, hyper-helices.

In [7], a slant helix in Euclidean 3-space was defined by the property that the principal normal makes a constant angle with a fixed direction. Moreover, Izumiya and Takeuchi showed that α is a slant helix in E3 if and only if the geodesic curvature of the principal normal of a space curve α is a constant function [15, 17, 19].

Preliminaries
Definition 1

The Minkowski 3-spaceE13[E_1^3 is the real vector space E3which is endowed with the standard indefinite flat metric 〈.,.〉 defined byu,v=u1v1+u2v2+u3v3,[\left\langle {u,v} \right\rangle = - u_1 v_1 + u_2 v_2 + u_3 v_3 ,\for any two vectors u = (u1,u2,u3) and v = (v1,v2,v3) in E13[E_1^3 . Since〈.,.〉 is an indefinite metric, an arbitrary vector u ∈E13[E_1^3 {0} can have one of three causal characters:

it can be space-like, ifu,u1> 0,

time-like, ifu,u1< 0 or

light-like or isotropic or null vector, ifu,u1 = 0 but u ≠0.

In particular, the norm (length) of a non-lightlike vector u ∈E13[E_1^3 is given byu=|u,u|˙[\left\| u \right\| = \sqrt {\left| {\left\langle {u,u} \right\rangle } \right|} .

Given a regular curveα:IE13[\alpha :I \to E_1^3 \can locally be spacelike, timelike or null (lightlike), if all of its velocity vectors α(t) satisfyα(t),α(t)〉1> 0, 〈α(t),α(t)〉1< 0 orα(t),α(t)〉1= 0 respectively, at any tɛI, whereα(t)=dαdt[\alpha ^{^' } (t) = \frac{{d\alpha }}{{dt}} .

Definition 2

A spacelike curveα:IE13[\alpha :I \to E_1^3 \is called a pseudo null curve, if its principal normal vector field N and binormal vector filed B are null vector fields satisfying the conditionN,B〉 = 1. The Frenet formulae of a non-geodesic pseudo null curve α has the form[TNB]=[0k00τ0k0τ][TNB],[\left[ {\begin{array}{*{20}c} {T^' } \\ {N^' } \\ {B^' } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} 0 & k & 0 \\ 0 & { - \tau } & 0 \\ { - k} & 0 & { - \tau } \\\end{array}} \right]\left[ {\begin{array}{*{20}c} T \\ N \\ B \\\end{array}} \right]{\rm{,}}where the curvature k(s) = 1 and the torsion τ(s) is an arbitrary function in arc-length parameter s of α. The Frenet’s frame vectors satisfy the equationsN,B=1,T,N=T,B=0,T,T=1,N,N=B,B=0[\left\langle {N,B} \right\rangle = 1{\rm{,}}\left\langle {T,N} \right\rangle = \left\langle {T,B} \right\rangle = 0{\rm{,}}\,\left\langle {T,T} \right\rangle = 1{\rm{,}}\left\langle {N,N} \right\rangle = \left\langle {B,B} \right\rangle = 0andT×N=N,N×B=T,B×T=B.[T \times N = N{\rm{,}}N \times B = T{\rm{,}}B \times T = B{\rm{.}}

The frame {T,N,B} is positively oriented, if det (T,N,B) = [T,N,B] = 1 [10].

The Bishop Frame

The Bishop frame or relatively parallel adapted frame {T,N1,N2} of a regular curve in Euclidean 3-space contains a tangential vector field T and two normal vector fields N1 and N2, which can be obtained by rotating the Frenet vectors N and B in the normal plane T of the curve, in such a way that they become relatively parallel. This means that their derivatives N1 and N2 with respect to the arc-length parameter s of the curve are collinear with the tangential vector field T [10].

Remark 1

We can also define N1and N2to be relatively parallel if the normal component T1 = span{N1,N2} of their derivatives N1and N2is zero, which implies that the mentioned derivatives are collinear with T1.

The Bishop frame of a pseudo null curve in E13[E_1^3

The Bishop frame {T1,N1,N2} of a pseudo null curve in E13[E_1^3 is positively oriented pseudo orthonormal frame consisting of the tangential vector field T1 and two relatively parallel lightlike normal vector fields N1 and N2. Bishop vector N1 (of the first Bishop frame) can be obtained by applying the hyperbolic rotation to the principal normal vector N, while the normal Bishop vector N2 (of the first Bishop frame) can be obtained by applying the composition of three rotations about two lightlike and one spacelike axis to the binormal vector B [10].

Theorem 1

Let α be a pseudo null curve inE13[E_1^3 parameterized by arc-length parameter s with the curvature k(s) = 1 and the torsion τ(s). Then the Bishop frame {T1,N1,N2} and the Frenet frame {T,N,B} of α are related by[T1N1N2]=[10001k2000k2][TNB],[\left[ {\begin{array}{*{20}c} {T_1 } \\ {N_1 } \\ {N_2 } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & {\frac{1}{{k_2 }}} & 0 \\ 0 & 0 & {k_2 } \\\end{array}} \right]\left[ {\begin{array}{*{20}c} T \\ N \\ B \\\end{array}} \right]{\rm{,}}and the Frenet equations of α according to the Bishop frame read[T1N1N2]=[0k2k1k100k200][T1N1N2],[\left[ {\begin{array}{*{20}c} {T_1^' } \\ {N_1^' } \\ {N_2^' } \\\end{array}} \right] = \left[ {\begin{array}{*{20}c} 0 & {k_2 } & {k_1 } \\ { - k_1 } & 0 & 0 \\ { - k_2 } & 0 & 0 \\\end{array}} \right]\left[ {\begin{array}{*{20}c} {T_1 } \\ {N_1 } \\ {N_2 } \\\end{array}} \right]{\rm{,}}where k1(s) = 0 and k2(s) = c0eτ(s)ds, c0R0+[c_0 \in R_0 + .

Which satisfies the conditionsT1,T1=1,N1,N1=N2,N2=0,N1,N2=1,T1,N2=T1,N1=0[10]˙[\left\langle {T_1 ,T_1 } \right\rangle = 1{\rm{,}}\left\langle {N_1 ,N_1 } \right\rangle = \left\langle {N_2 ,N_2 } \right\rangle = 0{\rm{, }}\left\langle {N_1 ,N_2 } \right\rangle = 1{\rm{,}}\left\langle {T_1 ,N_2 } \right\rangle = \left\langle {T_1 ,N_1 } \right\rangle = 0\left[ {10} \right]{\rm{.}}

Curves of AW(k)- type
Proposition 1

Let α be a Frenet curve of osculating order 3 inE13[E_1^3 , by using the Bishop frame of pseudo null curve(2.6), then we haveα(s)=T1(s),α(s)=k2N1+k1N2,α(s)=2k1k2T1+k2N1+k1N2,α(s)=(3k1k23k1k2)T1+(k22k1k22)N1+(k12k12k2)N2˙[\alpha ^{^' } \left( s \right) = T_1 \left( s \right){\rm{, }}\alpha ^{^{''} } \left( s \right) = k_2 N_1 + k_1 N_2 {\rm{, }}\alpha ^{^{'''} } \left( s \right) = - 2k_1 k_2 T_1 + k_2^{^' } N_1 + k_1^{^' } N_2 {\rm{,}}\,\alpha ^{^{''''} } \left( s \right) = \left( { - 3k_1^{^' } k_2 - 3k_1 k_2^{^' } } \right)T_1 + \left( {k_2^{^{''} } - 2k_1 k_2^2 } \right)N_1 + \left( {k_1^{^{''} } - 2k_1^2 k_2 } \right)N_2 {\rm{.}}

Notation 1

Let us writeM1(s)=k2N1+k1N2,[M_1 \left( s \right) = k_2 N_1 + k_1 N_2 {\rm{,}}M2(s)=k2N1+k1N2,[M_2 \left( s \right) = k_2^{^' } N_1 + k_1^{^' } N_2 {\rm{,}}M3(s)=(k22k1k22)N1+(k12k12k2)N2.[M_3 \left( s \right) = \left( {k_2^{^{''} } - 2k_1 k_2^2 } \right)N_1 + \left( {k_1^{^{''} } - 2k_1^2 k_2 } \right)N_2 {\rm{.}}

Corollary 1

α (s), α (s), α″′ (s) and α″″ (s) are linearly dependent if and only if M1 (s), M2 (s) and M3 (s) are linearly dependent.

Definition 3

Frenet curves of osculating order 3 are :

of type weak AW (2) if they satisfyM3(s)=M3(s),M2(s)M2(s),[M_3 \left( s \right) = \left\langle {M_3 \left( s \right),M_2^ \star \left( s \right)} \right\rangle M_2^ \star \left( s \right){\rm{,}}

of type weak AW (3) if they satisfyM3(s)=M3(s),M1(s)M1(s),[M_3 \left( s \right) = \left\langle {M_3 \left( s \right),M_1^ \star \left( s \right)} \right\rangle M_1^ \star \left( s \right){\rm{,}}whereM1(s)=M1(s)M1(s),[M_1^ \star \left( s \right) = \frac{{M_1 \left( s \right)}}{{\left\| {M_1 \left( s \right)} \right\|}}{\rm{,}}M2(s)=M2(s)M2(s),M1(s)M1(s)M2(s)M2(s),M1(s)M1(s),[M_2^ \star \left( s \right) = \frac{{M_2 \left( s \right) - \left\langle {M_2 \left( s \right),M_1^ \star \left( s \right)} \right\rangle M_1^ \star \left( s \right)}}{{\left\| {M_2 \left( s \right) - \left\langle {M_2 \left( s \right),M_1^ \star \left( s \right)} \right\rangle M_1^ \star \left( s \right)} \right\|}}{\rm{,}}

of type AW (1) if they satisfyM3(s)=0,[M_3 \left( s \right) = 0{\rm{,}}

of type AW (2) if they satisfyM2(s)2M3(s)=M3(s),M2(s)M2(s),[left\| {M_2 \left( s \right)} \right\|^2 M_3 \left( s \right) = \left\langle {M_3 \left( s \right),M_2 \left( s \right)} \right\rangle M_2 \left( s \right){\rm{,}}

of type AW (3) if they satisfyM1(s)2M3(s)=M3(s),M1(s)M1(s).[\left\| {M_1 \left( s \right)} \right\|^2 M_3 \left( s \right) = \left\langle {M_3 \left( s \right),M_1 \left( s \right)} \right\rangle M_1 \left( s \right){\rm{.}}

Proposition 2

Suppose that α is a Frenet curve of osculating order 3 inE13[E_1^3 , then α is AW (1)-type if and only ifk1=2k12k2,[k_1^{^{''} } = 2k_1^2 k_2 {\rm{,}}k2=2k1k22.[k_2^{^{''} } = 2k_1 k_2^2 {\rm{.}}

Proof

Since α is a curve of AW (1)-type, then α must satisfy (3.8)M3(s)=(k22k1k22)N1+(k12k12k2)N2,0=(k22k1k22)N1+(k12k12k2)N2˙[M_3 \left( s \right) = \left( {k_2^{^{''} } - 2k_1 k_2^2 } \right)N_1 + \left( {k_1^{^{''} } - 2k_1^2 k_2 } \right)N_2 {\rm{, }}0 = \left( {k_2^{^{''} } - 2k_1 k_2^2 } \right)N_1 + \left( {k_1^{^{''} } - 2k_1^2 k_2 } \right)N_2 {\rm{.}}

Since N1 and N2 are linearly independent, then we have k22k1k22=0k2=2k1k22,[k_2^{^{''} } - 2k_1 k_2^2 = 0\,k_2^{^{''} } = 2k_1 k_2^2 {\rm{,}} and k12k12k2=0k1=2k12k2,[k_1^{^{''} } - 2k_1^2 k_2 = 0\,k_1^{^{''} } = 2k_1^2 k_2 , which completes the proof of the proposition.

Proposition 3

Let α be a Frenet curve of osculating order 3 inE13[E_1^3 , then α is AW (2)-type if and only ifk1k22k12k2k2=k1k22k1k1k22.[k_1^{^{''} } k_2^{^' } - 2k_1^2 k_2 k_2^{^' } = k_1^{^' } k_2^{^{''} } - 2k_1 k_1^{^' } k_2^2 {\rm{.}}

Proof

Suppose that α is a Frenet curve of osculating order 3. From (2.14) and (2.15) we can write M2(s)=β(s)N1+γ(s)N2,M3(s)=δ(s)N1+η(s)N2,[M_2 \left( s \right) = \beta \left( s \right)N_1 + \gamma \left( s \right)N_2 {\rm{, }}M_3 \left( s \right) = \delta \left( s \right)N_1 + \eta \left( s \right)N_2 {\rm{,}} where β (s), γ (s), δ (s) and η (s) are differential functions. Since M2 (s) and M3 (s) are linearly dependent, then the determinant of the coefficients of N1 and N2 is equal to zero and hence one can write |β(s)γ(s)δ(s)η(s)|=0,[\left| {\begin{array}{*{20}c} {\beta \left( s \right)} & {\gamma \left( s \right)} \\ {\delta \left( s \right)} & {\eta \left( s \right)} \\\end{array}} \right| = 0{\rm{,}} where β(s)=k2,γ(s)=k1,δ(s)=k22k1k22,η(s)=k12k12k2.[\beta \left( s \right) = k_2^{^' } {\rm{,}}\;\gamma \left( s \right) = k_1^{^' } {\rm{,}}\,\delta \left( s \right) = k_2^{^{''} } - 2k_1 k_2^2 {\rm{,}}\,\eta \left( s \right) = k_1^{^{''} } - 2k_1^2 k_2 {\rm{.}}

By substituting (3.15) in (3.14), we can obtain (3.13), which completes the proof of the proposition.

Proposition 4

Let α be a Frenet curve of osculating order 3 inE13[E_1^3 , then α is AW (3)-type if and only ifk1k2=k1k2.[k_1^{^{''} } k_2 = k_1 k_2^{^{''} } {\rm{.}}

Proof

Suppose that α is a Frenet curve of osculating order 3, then M1(s)=β(s)N1+γ(s)N2,M3(s)=δ(s)N1+η(s)N2,[M_1 \left( s \right) = \beta \left( s \right)N_1 + \gamma \left( s \right)N_2 {\rm{,}}\,M_3 \left( s \right) = \delta \left( s \right)N_1 + \eta \left( s \right)N_2 {\rm{,}} where β (s), γ (s), δ (s) and η (s) are differential functions. Since M2 (s) and M3 (s) are linearly dependent, then the determinant of the coefficients of N1 and N2 is equal to zero and hence we can write β(s)η(s)γ(s)δ(s)=0[\beta \left( s \right)\eta \left( s \right) - \gamma \left( s \right)\delta \left( s \right) = 0 where β(s)=k2,γ(s)=k1,δ(s)=k22k1k22,η(s)=k12k12k2˙[\beta \left( s \right) = k_2 {\rm{,}}\;\;\gamma \left( s \right) = k_1 {\rm{,}}\,\delta \left( s \right) = k_2^{^{''} } - 2k_1 k_2^2 {\rm{,}}\,\;\eta \left( s \right) = k_1^{^{''} } - 2k_1^2 k_2 {\rm{.}}

Considering these equations in (3.17), we get (3.16), which completes the proof of the proposition.

Proposition 5

Let α be a Frenet curve of osculating order 3 inE13[E_1^3 , then α is of weak AW (2)−type if and only if(k22k1k22)=pp2+q2[(k22k1k22)q+(k12k12k2)p],[\left( {k_2^{^{''} } - 2k_1 k_2^2 } \right) = \frac{p}{{p^2 + q^2 }}\left[ {\left( {k_2^{^{''} } - 2k_1 k_2^2 } \right)q + \left( {k_1^{^{''} } - 2k_1^2 k_2 } \right)p} \right]{\rm{,}}(k12k12k2)=qp2+q2[(k22k1k22)q+(k12k12k2)p],[\left( {k_1^{^{''} } - 2k_1^2 k_2 } \right) = \frac{q}{{p^2 + q^2 }}\left[ {\left( {k_2^{^{''} } - 2k_1 k_2^2 } \right)q + \left( {k_1^{^{''} } - 2k_1^2 k_2 } \right)p} \right]{\rm{,}}wherep=(k22+k12)k2(k1k2)k2andq=(k22+k12)k1(k1k2)k1˙[p = \left( {k_2^2 + k_1^2 } \right)k_2^{^' } - \left( {k_1 k_2 } \right)^{^' } k_2 \;{\rm{and}}\;q = \left( {k_2^2 + k_1^2 } \right)k_1^{^' } - \left( {k_1 k_2 } \right)^{^' } k_1 {\rm{.}}

Proposition 6

Let α be a Frenet curve of osculating order 3 inE13[E_1^3 , then α is of weak AW (3)−type if and only ifk22k1k22=k2k22+k12[k1k2+k1k24k12k22],[k_2^{^{''} } - 2k_1 k_2^2 = \frac{{k_2 }}{{k_2^2 + k_1^2 }}\left[ {k_1 k_2^{^{''} } + k_1^{^{''} } k_2 - 4k_1^2 k_2^2 } \right],k12k12k2=k1k22+k12[k1k2+k1k24k12k22].[k_1^{^{''} } - 2k_1^2 k_2 = \frac{{k_1 }}{{k_2^2 + k_1^2 }}\left[ {k_1 k_2^{^{''} } + k_1^{^{''} } k_2 - 4k_1^2 k_2^2 } \right].

The Slant helices according to Bishop frame of the pseudo null curve in Minkowski 3-space
Definition 4

Helix is a curve whose tangent lines make a constant angle with a fixed direction. Helices are characterized by the fact that the ratiok1k2[\frac{{k_1 }}{{k_2 }}is constant along the curve.

Definition 5

A unit speed curve α is called a slant helix if there exists a non-zero constant vector field U ɛE13[E_1^3 such that the functionN (s),Uis constant.

It is important to point out, in contrast to what happens in E3, we cannot define the angle between two vectors (except that both vectors are of time-like). For this reason, we avoid to say about the angle between the normal vector field N (s) and U [14].

Theorem 2

Let α be a pseudo null curve inE13[E_1^3 , then α is a general helix if and only ifk1k2[\frac{{k_1 }}{{k_2 }}is constant.

Proof

Let α be a general helix. The slope axis of the curve α is shown as sp{U} . note that T,U=c(cisconstant).[\left\langle {T,U} \right\rangle = c\;\;{\rm{(cisconstant)}}{\rm{.}}

If we differentiate both sides of the equation (4.1), then we have T,U=0˙[\left\langle {T^{^' } ,U} \right\rangle = 0.

By using (2.10) and (4.44) k2N1+k1N2,U=0,k2cosθ+k1sinθ=0,k1k2=cotθ(constant),[\frac{{k_1 }}{{k_2 }} = - \cot \theta \;\;{\rm{(constant),}} as desired.

Theorem 3

Let α be a pseudo null curve inE13[E_1^3 , then α is a slant helix if and only ifk1k2[\frac{{k_1 }}{{k_2 }}is constant.

Proof

Let α be a slant helix in E13[E_1^3 and 〈N (s),U〉 is constant. Then α is a slant helix, from the definition we have N(s),U=c(cisaconstant),[\left\langle {N\left( s \right),U} \right\rangle = c\;\;{\rm{(cisaconstant),}} where U is a constant vector in E13[E_1^3 . By differentiating (4.4) and using (2.6)N(s),U=0,k1T1,U=0,k10.[\left\langle {N^{^' } \left( s \right),U} \right\rangle = 0{\rm{,}}\, - k_1 \left\langle {T_1 ,U} \right\rangle = 0,\;k_1 \ne 0.

Hence T1,U=0,[\left\langle {T_1 ,U} \right\rangle = 0{\rm{,}}uɛsp{N1,N2}, therefore u=cosθ N1 + sinθ N2. U is a linear combination of N1 and N2. By differentiating (4.5) and using (2.6)T,U=0,k2cosθ+k1sinθ=0,k1k2=cotθ,[\left\langle {T^{^' } ,U} \right\rangle = 0{\rm{,}}\,k_2 \cos \theta + k_1 \sin \theta = 0{\rm{,}}\,\frac{{k_1 }}{{k_2 }} = - \cot \theta {\rm{,}} as desired.

Theorem 4

Let α be a pseudo null curve inE13[E_1^3 , then α is a slant helix if and only ifdet(N1,N1,N1)=0.[det(N_1^' ,N_1^{^{''} } ,N_1^{^{'''} } ) = 0.

Proof

(⇒) Suppose that k1k2[\frac{{k_1 }}{{k_2 }} be constant. We have equalities as N1=k1T,N1=k1Tk1k2N1k12N2,N1=(2k12k2k1)T+(2k1k2k1k2)N13k1k1N2˙[N_1^' = - k_1 T{\rm{,}}\,N_1^{''} = - k_1^{^' } T - k_1 k_2 N_1 - k_1^2 N_2 {\rm{,}}\,N_1^{^{'''} } = \left( {2k_1^2 k_2 - k_1^{^{''} } } \right)T + \left( { - 2k_1^{^' } k_2 - k_1 k_2^{^' } } \right)N_1 - 3k_1 k_1^{^' } N_2 {\rm{.}}

So we get det(N1,N1,N1)=|k100k1k1k2k12(2k12k2k1)(2k1k2+k1k2)3k1k1|,det(N1,N1,N1)=k13k22(k1k2)˙[det(N_1^' ,N_1^{^{''} } ,N_1^{^{'''} } ) = \left| {\begin{array}{*{20}c} { - k_1 } & 0 & 0 \\ { - k_1^{^' } } & { - k_1 k_2 } & { - k_1^2 } \\ {\left( {2k_1^2 k_2 - k_1^{^{''} } } \right)} & { - \left( {2k_1^{^' } k_2 + k_1 k_2^{^' } } \right)} & { - 3k_1 k_1^{^' } } \\\end{array}} \right|{\rm{,}}\,det(N_1^' ,N_1^{^{''} } ,N_1^{^{'''} } ) = - k_1^3 k_2^2 \left( {\frac{{k_1 }}{{k_2 }}} \right)^{^' } {\rm{.}} Since α is a slant helix and k1k2[\frac{{k_1 }}{{k_2 }} is constant. Hence, we have det(N1,N1,N1)=0,butk20.[det(N_1^' ,N_1^{^{''} } ,N_1^{^{'''} } ) = 0,\;{\rm{but}}\;k_2 \ne 0. (⇐) Suppose that det(N1,N1,N″′1) = 0, then it is clear that the k1k2[\frac{{k_1 }}{{k_2 }} is constant, since (k1k2)[\left( {\frac{{k_1 }}{{k_2 }}} \right)^' is zero. Hence the theorem is proved.

Theorem 5

Let α be a pseudo null curve inE13[E_1^3 , then α is a slant helix if and only ifdet(N2,N2,N2)=0.[det(N_2^' ,N_2^{^{''} } ,N_2^{^{'''} } ) = 0.

Proof

(⇒) Suppose that k1k2[\frac{{k_1 }}{{k_2 }} be constant. From (2.6) we have N2=k2T,[N_2^' = - k_2 T{\rm{,}} therefore N2=k2Tk22N1k1k2N2,N2=(2k1k22k2)T+(k222k2k2)N1+(k1k2k1k2k1k2)N2˙[N_2^{''} = - k_2^{^' } T - k_2^2 N_1 - k_1 k_2 N_2 {\rm{,}}\,N_2^{^{'''} } = \left( {2k_1 k_2^2 - k_2^{^{''} } } \right)T + \left( { - k_2^2 - 2k_2 k_2^{^' } } \right)N_1 + \left( { - k_1 k_2 - k_1^{^' } k_2 - k_1 k_2^{^' } } \right)N_2 {\rm{.}}

So we get det(N2,N2,N2)=|k200k2k22k1k2(k1k22k2)(22+2k2k2)(k21+k1k2+k1k2)|,det(N2,N2,N2)=k25(k1k2).[\begin{array}{l} \user1{det}\left( {N_2^' ,N_2^{''} ,N_2^{'''} } \right) = \left| {\begin{array}{*{20}c} { - k_2 } & 0 & 0 \\ { - k_2^' } & { - k_2^2 } & { - k_1 k_2 } \\ {\left( {\begin{array}{*{20}c} {k_1 k_2^2 } \\ { - k_2^{''} } \\\end{array}} \right)} & { - \left( {\begin{array}{*{20}c} 2 \\ 2 \\ { + 2k_2 k_2^' } \\\end{array}} \right)} & { - \left( {\begin{array}{*{20}c} {{}_1k_2 } \\ { + k_1^' k_2 } \\ { + k_1 k_2^' } \\\end{array}} \right)} \\\end{array}} \right|, \\ \user1{det}\left( {N_2^' N_2^{''} ,N_2^{'''} } \right) = - k_2^5 \left( {\frac{{k_1 }}{{k_2 }}} \right)^' \\ \end{array}

Since α is a slant helix and k1k2[\frac{{k_1 }}{{k_2 }} is constant. Hence, we have det(N2,N2,N2)=0,butk20.[det(N_2^' ,N_2^{^{''} } ,N_2^{^{'''} } ) = 0,\;but\;k_2 \ne 0. (⇐) Suppose that det(N2,N2,N″′2) = 0, then it is clear that the k1k2[\frac{{k_1 }}{{k_2 }} is constant, since (k1k2)[\left( {\frac{{k_1 }}{{k_2 }}} \right)^' is zero. Hence the theorem is proved.

From (2.6)α(s)=T,DTT=k2N1+k1N2,DTN1=k1T1,DTN2=k2T1,[\alpha \left( s \right) = T{\rm{,}}\,D_T T = k_2 N_1 + k_1 N_2 {\rm{,}}\,\,D_T N_1 = - k_1 T_1 {\rm{,}}\,D_T N_2 = - k_2 T_1 {\rm{,}}

Theorem 6

Letα:IE13[\alpha :I \to E_1^3 \be a unit speed pseudo null curve on M1then α is a general slant helix if and only ifDT(DTDTN1)+3k1DTT=(k12k12k2)1k1DTN1.[D_T \left( {D_T D_T N_1 } \right) + 3k_1^{^' } D_T T = \left( {k_1^{^{''} } - 2k_1^2 k_2 } \right)\frac{1}{{k_1 }}D_T N_1 {\rm{.}}

Proof

(⇒) Suppose that α is a general slant helix. Then, from (4.8), we have DTN1=k1T1,DT(DTN1)=k1T1k1k2N1k12N2,DT(DTDTN1)=(k12k2k1)T1k1DTT(k1k2+k1k2)N1[D_T N_1 = - k_1 T_1 {\rm{,}}\,D_T \left( {D_T N_1 } \right) = - k_1^{^' } T_1 - k_1 k_2 N_1 - k_1^2 N_2 {\rm{,}}\,D_T \left( {D_T D_T N_1 } \right) = \left( {k_1^2 k_2 - k_1^{^{''} } } \right)T_1 - k_1^{^' } D_T T - \left( {k_1^{^' } k_2 + k_1 k_2^{^' } } \right)N_1 \k1k2DTN12k1k1N2.[ - k_1 k_2 D_T N_1 - 2k_1 k_1^{^' } N_2 {\rm{.}}

Since α is a general helix k1k2=ccisconstant,[\frac{{k_1 }}{{k_2 }} = c\;\;c{\rm{isconstant,}} by differentiating (4.12), we get (k1k2)=2k1k2,[\left( {k_1 k_2 } \right)^{^' } = 2k_1^{^' } k_2 {\rm{,}} but DTN1=N1=k1T,T=1k1DTN1.[D_T N_1 = N_1^{^' } = - k_1 T{\rm{,}}\,T = - \frac{1}{{k_1 }}D_T N_1 {\rm{.}}

By substituting (4.13) and (4.14) in (4.11) we get DT(DTDTN1)=(k12k12k2)(1k1DTN1)3k1DTT,DT(DTDTN1)+3k1DTT=(k12k12k2)(1k1DTN1).[D_T \left( {D_T D_T N_1 } \right) = \left( {k_1^{^{''} } - 2k_1^2 k_2 } \right)\left( {\frac{1}{{k_1 }}D_T N_1 } \right) - 3k_1^{^' } D_T T{\rm{,}}\,D_T \left( {D_T D_T N_1 } \right) + 3k_1^{^' } D_T T = \left( {k_1^{^{''} } - 2k_1^2 k_2 } \right)\left( {\frac{1}{{k_1 }}D_T N_1 } \right){\rm{.}} (⇐) We will now show that pseudo null curve α is a slant helix. By differentianting (4.14) covariantly T=1k1DTN1[T = - \frac{1}{{k_1 }}D_T N_1 DTT=k1k12DTN11k1DTDTN1,[D_T T = \frac{{k_1^{^' } }}{{k_1^2 }}D_T N_1 - \frac{1}{{k_1 }}D_T D_T N_1 {\rm{,}}DTDTT=(k1k12)DTN1+2k1k12DTDTN11k1DTDTDTN1.[D_T D_T T = \left( {\frac{{k_1^{^' } }}{{k_1^2 }}} \right)^{^' } D_T N_1 + \frac{{2k_1^{^' } }}{{k_1^2 }}D_T D_T N_1 - \frac{1}{{k_1 }}D_T D_T D_T N_1 {\rm{.}}

By substituting (4.15) in (4.17) we get DTDTT=[(k1k12)1k12(k12k12k2)]DTN1+2k1k12DTDTN1+3k1k1DTT,[D_T D_T T = \left[ {\left( {\frac{{k_1^{^' } }}{{k_1^2 }}} \right)^{^' } - \frac{1}{{k_1^2 }}\left( {k_1^{^{''} } - 2k_1^2 k_2 } \right)} \right]D_T N_1 \, + \frac{{2k_1^{^' } }}{{k_1^2 }}D_T D_T N_1 + \frac{{3k_1^{^' } }}{{k_1 }}D_T T{\rm{,}} by substituting (4.8) and (4.10) in (4.18) we get DTDTT=[(k1k12)1k12(k12k12k2)]DTN12(k1k1)2T+k1k2k1N1+k1N2.[D_T D_T T = \left[ {\left( {\frac{{k_1^{^' } }}{{k_1^2 }}} \right)^{^' } - \frac{1}{{k_1^2 }}\left( {k_1^{^{''} } - 2k_1^2 k_2 } \right)} \right]D_T N_1 \, - 2\left( {\frac{{k_1^{^' } }}{{k_1 }}} \right)^2 T + \frac{{k_1^{^' } k_2 }}{{k_1 }}N_1 + k_1^{^' } N_2 {\rm{.}}

From (4.8)DTT=k2N1+k1N2,DTDTT=k2N1+k2DTN1+k1N2k1k2T1.[D_T T = k_2 N_1 + k_1 N_2 {\rm{,}}\,D_T D_T T = k_2^{^' } N_1 + k_2 D_T N_1 + k_1^{^' } N_2 - k_1 k_2 T_1 {\rm{.}}

By comparing (4.19) and (4.20)k1k2k1=k2,k1k1=k2k2,[\frac{{k_1^{^' } k_2 }}{{k_1 }} = k_2^{^' } {\rm{,}}\,\frac{{k_1^{^' } }}{{k_1 }} = \frac{{k_2^{^' } }}{{k_2 }}{\rm{,}} by integrating (4.21) we get k1k2=ec(constant)˙[\frac{{k_1 }}{{k_2 }} = e^c \;\;{\rm{(constant)}}{\rm{.}}

Hence α is a general slant helix.

Theorem 7

Letα:IE13[\alpha :I \to E_1^3 \be a unit speed pseudo null curve on M1, then α is a general slant helix if and only ifDT(DTDTN2)+3k2DTT=(k2k22k1k2)DTN2.[D_T \left( {D_T D_T N_2 } \right) + 3k_2^{^' } D_T T = \left( {\frac{{k_2^{^{''} } }}{{k_2 }} - 2k_1 k_2 } \right)D_T N_2 {\rm{.}}

Proof

(⇒) Suppose that α is a general slant helix. Then, from (4.8), we have DTN2=k2T1,DTDTN2=k2T1k22N1k1k2N2,DT(DTDTN2)=(k22k1k2)T1k2DTT2k2k2N1[D_T N_2 = - k_2 T_1 {\rm{,}}\,D_T D_T N_2 = - k_2^{^' } T_1 - k_2^2 N_1 - k_1 k_2 N_2 {\rm{,}}\,D_T \left( {D_T D_T N_2 } \right) = \left( {k_2^2 k_1 - k_2^{^{''} } } \right)T_1 - k_2^{^' } D_T T - 2k_2 k_2^{^' } N_1 (k1k2+k1k2)N2k1k2DTN2.[ - \left( {k_1^{^' } k_2 + k_1 k_2^{^' } } \right)N_2 - k_1 k_2 D_T N_2 {\rm{.}}

Since α is a general helix k1k2=ccisconstant,[\;\frac{{k_1 }}{{k_2 }} = c\;{\rm{cisconstant}}, by differentiating the above equation we get (k1k2)=2k1k2,[\left( {k_1 k_2 } \right)^{^' } = 2k_1 k_2^{^' } {\rm{,}} but T=1k2DTN2.[T = - \frac{1}{{k_2 }}D_T N_2 {\rm{.}}

By substituting (4.25) and (4.26) in (4.24) we get DT(DTDTN2)=(k2k22k1k2)DTN23k2DTT,DT(DTDTN2)+3k2DTT=(k2k22k1k2)DTN2.[D_T \left( {D_T D_T N_2 } \right) = \left( {\frac{{k_2^{^{''} } }}{{k_2 }} - 2k_1 k_2 } \right)D_T N_2 - 3k_2^{^' } D_T T{\rm{,}}\,D_T \left( {D_T D_T N_2 } \right) + 3k_2^{^' } D_T T = \left( {\frac{{k_2^{^{''} } }}{{k_2 }} - 2k_1 k_2 } \right)D_T N_2 {\rm{.}} (⇐) We will show that pseudo null curve α is a slant helix. So by differentianting (4.26) covariantly we get DTT=k2k22DTN21k2DTDTN2,DTDTT=(k2k22)DTN2+2k2k22DTDTN2[D_T T = \frac{{k_2^{^' } }}{{k_2^2 }}D_T N_2 - \frac{1}{{k_2 }}D_T D_T N_2 {\rm{,}}\,D_T D_T T = \left( {\frac{{k_2^{^' } }}{{k_2^2 }}} \right)^{^' } D_T N_2 + \frac{{2k_2^{^' } }}{{k_2^2 }}D_T D_T N_2 1k2DTDTDTN2.[ - \frac{1}{{k_2 }}D_T D_T D_T N_2 {\rm{.}}

By substituting (4.27) in (4.29) we get DTDTT=[(k2k22)(k2k22k1k2)1k2]DTN2+2k2k22DTDTN2+3k2k2DTT,[D_T D_T T = \left[ {\left( {\frac{{k_2^{^' } }}{{k_2^2 }}} \right)^{^' } - \left( {\frac{{k_2^{^{''} } }}{{k_2 }} - 2k_1 k_2 } \right)\frac{1}{{k_2 }}} \right]D_T N_2 \, + \frac{{2k_2^{^' } }}{{k_2^2 }}D_T D_T N_2 + \frac{{3k_2^{^' } }}{{k_2 }}D_T T{\rm{,}} by substituting (4.8) and (4.23) in (4.30) we get DTDTT=[(k2k22)(k2k22k1k2)1k2]DTN22(k2k2)2T1+k2N1+k1k2k2N2.[D_T D_T T = \left[ {\left( {\frac{{k_2^{^' } }}{{k_2^2 }}} \right)^{^' } - \left( {\frac{{k_2^{^{''} } }}{{k_2 }} - 2k_1 k_2 } \right)\frac{1}{{k_2 }}} \right]D_T N_2 \, - 2\left( {\frac{{k_2^{^' } }}{{k_2 }}} \right)^2 T_1 + k_2^{^' } N_1 + \frac{{k_1 k_2^{^' } }}{{k_2 }}N_2 {\rm{.}}

From (4.8)DTT=k2N1+k1N2,DTDTT=k2N1+k2DTN1+k1N2k1k2T1.[D_T T = k_2 N_1 + k_1 N_2 {\rm{,}}\,D_T D_T T = k_2^{^' } N_1 + k_2 D_T N_1 + k_1^{^' } N_2 - k_1 k_2 T_1 {\rm{.}}

By comparing (4.31) and (4.32)k1k2k2=k1k1k1=k2k2,[\frac{{k_1 k_2^{^' } }}{{k_2 }} = k_1^{^' } \,\frac{{k_1^{^' } }}{{k_1 }} = \frac{{k_2^{^' } }}{{k_2 }}{\rm{,}} by integrating (4.33) we get k1k2=ecconstant˙[\frac{{k_1 }}{{k_2 }} = e^c \;\;{\rm{constant}}{\rm{.}}

Hence α is a general slant helix, the theorem is now proved.

eISSN:
2444-8656
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics