Accès libre

Data-driven Multiple Regression Analysis of Teaching Mode Innovation and Teaching Quality of English Education in Colleges and Universities Based on Data

  
26 sept. 2025
À propos de cet article

Citez
Télécharger la couverture

Figure 1.

Overview statistics of data set
Overview statistics of data set

Figure 2.

Comparison diagrams of clustering relationship
Comparison diagrams of clustering relationship

Figure 3.

Comparison of relationship grouping evaluation
Comparison of relationship grouping evaluation

Figure 4.

Process model of English information based teaching model based on SPOC
Process model of English information based teaching model based on SPOC

Figure 5.

The distribution of residual
The distribution of residual

Conversion table of attribute codes

Text type Data attribute Value
Preview Yes 0
No 1
Course Basic English 0
Professional English 1
Business English 2
English listening 3
Requirement Self-directed type 0
Self-driven type 1
Friendly type 2
Passive type 3

The calculation result(Ⅱ) of multi-factors linear regression model (2)

Parameter Parametric estimate Parametric estimate
k0 0.1864 [0.1324, 0.2379]
k1 0.1012 [0.0443, 0.1566]
k4 0.7036 [0.6311, 0.7792]
R2 = 0.7843, F = 244.1613, p = 0.0000, s2 = 0.0081

The calculation result of single factor linear regression model

Parameter Parametric estimate Parametric estimate
β01 0.4843 [0.4064, 0.5631]
β11 0.3185 [0.2182, 0.4192]
R2 = 0.2043, F = 39.7541, p = 0.0000, s2 = 0.0374
β02 -0.9687 [-1.945, 0.0082]
β12 1.7012 [0.7135, 2.6789]
R2 = 0.0729, F = 11.5871, p = 0.0005, s2 = 0.0421
β03 0.3712 [0.2538, 0.4957]
β13 0.5876 [0.3872, 0.7831]
R2 = 0.1879, F = 36.3412, p = 0.0000, s2 = 0.0384
β04 0.2395 [0.1728, 0.3116]
β14 0.7221 [0.6234, 0.8123]
R2 = 0.5871, F = 207.3967, p = 0.0000, s2 = 0.0198
β05 0.3387 [0.0184, 0.6621]
β15 0.3871 [0.0553, 0.7213]
R2 = 0.0354, F = 5.3687, p = 0.0213, s2 = 0.0443

Analysis of correlation coefficients

Group Type n (Sm)uik (Sn)uij (SmRn)uijuik SmRn r
S1 S1R0 88 8.37 6.01 7.29 0.15 0.23
S1R1 68 8.91 6.29 11.02 0.22
S1R2 92 8.74 7.31 18.10 0.26
S1R3 75 10.14 9.13 22.72 0.26
S2 S2R0 88 8.37 8.38 11.75 0.18 0.2
S2R1 68 8.91 8.91 4.31 0.08
S2R2 92 8.72 8.74 21.90 0.30
S2R3 75 10.14 10.12 16.57 0.21
S3 S3R0 88 8.37 5.04 2.71 0.07 0.1
S3R1 68 8.89 5.42 7.40 0.16
S3R2 92 8.74 7.32 2.61 0.05
S3R3 75 10.12 7.47 14.43 0.20
S4 S4R0 88 5.97 8.37 9.15 0.21 0.25
S4R1 68 6.29 8.91 2.98 0.05
S4R2 92 7.29 8.72 22.34 0.35
S4R3 75 9.13 10.14 25.04 0.34
S5 S5R0 88 6.00 5.06 1.47 0.04 0.07
S5R1 68 6.27 5.42 4.31 0.11
S5R2 92 7.28 7.31 -0.11 0.00
S5R3 75 9.16 7.45 9.52 0.15
S6 S6R0 88 8.35 5.04 0.42 0.02 0.08
S6R1 68 8.83 5.42 1.67 0.05
S6R2 92 8.72 7.32 5.44 0.08
S6R3 75 10.14 7.45 14.88 0.23

Data attributes and examples of training set

ui1 ui2 ui3 ui4 ui5 ui6 ui7
1 88 91 90 85 2 3
0 89 98 84 97 1 0
1 82 93 87 90 0 1
0 89 94 98 91 0 2
1 83 86 94 81 0 0
1 81 84 87 89 0 2
0 88 80 80 92 2 2
1 78 79 88 90 0 1

The calculation result of multi-factors linear regression model (1)

Parameter Parametric estimate Parametric estimate
β0 0.8213 [0.0645, 1.5578]
β1 0.1073 [0.0213, 0.1984]
β2 -0.8531 [-1.7682, 0.0536]
β3 0.0573 [-0.1328, 0.2368]
β4 0.6742 [0.5574, 0.7921]
β5 0.1983 [-0.0651, 0.4622]
R2 = 0.6151, F = 46.1386, p = 0.0000, s2 = 0.0175

The calculation result(Ⅰ) of multi-factors linear regression model (1)

Parameter Parametric estimate Parametric estimate
k0 0.2011 [0.1276, 0.2732]
k1 0.1153 [0.0364, 0.1935]
k4 0.6531 [0.5384, 0.7633]
R2 = 0.6031, F = 112.9138, p = 0.0000, s2 = 0.0184