Data-driven Multiple Regression Analysis of Teaching Mode Innovation and Teaching Quality of English Education in Colleges and Universities Based on Data
26 sept. 2025
À propos de cet article
Publié en ligne: 26 sept. 2025
Reçu: 26 déc. 2024
Accepté: 16 avr. 2025
DOI: https://doi.org/10.2478/amns-2025-1063
Mots clés
© 2025 Qingyan Ge, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Conversion table of attribute codes
Text type | Data attribute | Value |
---|---|---|
Preview | Yes | 0 |
No | 1 | |
Course | Basic English | 0 |
Professional English | 1 | |
Business English | 2 | |
English listening | 3 | |
Requirement | Self-directed type | 0 |
Self-driven type | 1 | |
Friendly type | 2 | |
Passive type | 3 |
The calculation result(Ⅱ) of multi-factors linear regression model (2)
Parameter | Parametric estimate | Parametric estimate |
---|---|---|
0.1864 | [0.1324, 0.2379] | |
0.1012 | [0.0443, 0.1566] | |
0.7036 | [0.6311, 0.7792] | |
The calculation result of single factor linear regression model
Parameter | Parametric estimate | Parametric estimate |
---|---|---|
0.4843 | [0.4064, 0.5631] | |
0.3185 | [0.2182, 0.4192] | |
-0.9687 | [-1.945, 0.0082] | |
1.7012 | [0.7135, 2.6789] | |
0.3712 | [0.2538, 0.4957] | |
0.5876 | [0.3872, 0.7831] | |
0.2395 | [0.1728, 0.3116] | |
0.7221 | [0.6234, 0.8123] | |
0.3387 | [0.0184, 0.6621] | |
0.3871 | [0.0553, 0.7213] | |
Analysis of correlation coefficients
Group | Type | ||||||
---|---|---|---|---|---|---|---|
88 | 8.37 | 6.01 | 7.29 | 0.15 | 0.23 | ||
68 | 8.91 | 6.29 | 11.02 | 0.22 | |||
92 | 8.74 | 7.31 | 18.10 | 0.26 | |||
75 | 10.14 | 9.13 | 22.72 | 0.26 | |||
88 | 8.37 | 8.38 | 11.75 | 0.18 | 0.2 | ||
68 | 8.91 | 8.91 | 4.31 | 0.08 | |||
92 | 8.72 | 8.74 | 21.90 | 0.30 | |||
75 | 10.14 | 10.12 | 16.57 | 0.21 | |||
88 | 8.37 | 5.04 | 2.71 | 0.07 | 0.1 | ||
68 | 8.89 | 5.42 | 7.40 | 0.16 | |||
92 | 8.74 | 7.32 | 2.61 | 0.05 | |||
75 | 10.12 | 7.47 | 14.43 | 0.20 | |||
88 | 5.97 | 8.37 | 9.15 | 0.21 | 0.25 | ||
68 | 6.29 | 8.91 | 2.98 | 0.05 | |||
92 | 7.29 | 8.72 | 22.34 | 0.35 | |||
75 | 9.13 | 10.14 | 25.04 | 0.34 | |||
88 | 6.00 | 5.06 | 1.47 | 0.04 | 0.07 | ||
68 | 6.27 | 5.42 | 4.31 | 0.11 | |||
92 | 7.28 | 7.31 | -0.11 | 0.00 | |||
75 | 9.16 | 7.45 | 9.52 | 0.15 | |||
88 | 8.35 | 5.04 | 0.42 | 0.02 | 0.08 | ||
68 | 8.83 | 5.42 | 1.67 | 0.05 | |||
92 | 8.72 | 7.32 | 5.44 | 0.08 | |||
75 | 10.14 | 7.45 | 14.88 | 0.23 |
Data attributes and examples of training set
1 | 88 | 91 | 90 | 85 | 2 | 3 |
0 | 89 | 98 | 84 | 97 | 1 | 0 |
1 | 82 | 93 | 87 | 90 | 0 | 1 |
0 | 89 | 94 | 98 | 91 | 0 | 2 |
1 | 83 | 86 | 94 | 81 | 0 | 0 |
1 | 81 | 84 | 87 | 89 | 0 | 2 |
0 | 88 | 80 | 80 | 92 | 2 | 2 |
1 | 78 | 79 | 88 | 90 | 0 | 1 |
The calculation result of multi-factors linear regression model (1)
Parameter | Parametric estimate | Parametric estimate |
---|---|---|
0.8213 | [0.0645, 1.5578] | |
0.1073 | [0.0213, 0.1984] | |
-0.8531 | [-1.7682, 0.0536] | |
0.0573 | [-0.1328, 0.2368] | |
0.6742 | [0.5574, 0.7921] | |
0.1983 | [-0.0651, 0.4622] | |
The calculation result(Ⅰ) of multi-factors linear regression model (1)
Parameter | Parametric estimate | Parametric estimate |
---|---|---|
0.2011 | [0.1276, 0.2732] | |
0.1153 | [0.0364, 0.1935] | |
0.6531 | [0.5384, 0.7633] | |