Accès libre

Dynamic Cost Estimation and Optimization Strategy in Engineering Cost Combining Reinforcement Learning

  
11 avr. 2025
À propos de cet article

Citez
Télécharger la couverture

Deliu, N. (2024). Reinforcement learning for sequential decision making in population research. Quality & Quantity, 58(6), 5057-5080. https://doi.org/10.1007/s11135-023-01755-z Deliu N. ( 2024 ). Reinforcement learning for sequential decision making in population research . Quality & Quantity , 58 ( 6 ), 5057 - 5080 . https://doi.org/10.1007/s11135-023-01755-z Search in Google Scholar

Tayefeh Hashemi, S., Ebadati, O. M., & Kaur, H. (2020). Cost estimation and prediction in construction projects: A systematic review on machine learning techniques. SN Applied Sciences, 2(10), 1703. https://doi.org/10.1007/s42452-020-03497-1 Tayefeh Hashemi S. Ebadati O. M. Kaur H. ( 2020 ). Cost estimation and prediction in construction projects: A systematic review on machine learning techniques . SN Applied Sciences , 2 ( 10 ), 1703 . https://doi.org/10.1007/s42452-020-03497-1 Search in Google Scholar

Jiang, C., Li, X., Lin, J. R., Liu, M., & Ma, Z. (2023). Adaptive control of resource flow to optimize construction work and cash flow via online deep reinforcement learning. Automation in Construction, 150, 104817. https://doi.org/10.1016/j.autcon.2023.104817 Jiang C. Li X. Lin J. R. Liu M. Ma Z. ( 2023 ). Adaptive control of resource flow to optimize construction work and cash flow via online deep reinforcement learning . Automation in Construction , 150 , 104817 . https://doi.org/10.1016/j.autcon.2023.104817 Search in Google Scholar

Hu, H., Jiang, S., Goswami, S. S., & Zhao, Y. (2024). Fuzzy Integrated Delphi-ISM-MICMAC Hybrid Multi-Criteria Approach to Optimize the Artificial Intelligence (AI) Factors Influencing Cost Management in Civil Engineering. Information, 15(5), 280. https://doi.org/10.3390/info15050280 Hu H. Jiang S. Goswami S. S. Zhao Y. ( 2024 ). Fuzzy Integrated Delphi-ISM-MICMAC Hybrid Multi-Criteria Approach to Optimize the Artificial Intelligence (AI) Factors Influencing Cost Management in Civil Engineering . Information , 15 ( 5 ), 280 . https://doi.org/10.3390/info15050280 Search in Google Scholar

Liu, Y. T., Yang, J. M., Chen, L., Guo, T., & Jiang, Y. (2020, August). Overview of reinforcement learning based on value and policy. In 2020 Chinese Control And Decision Conference (CCDC) (pp. 598-603). IEEE. https://doi.org/10.1109/CCDC49329.2020.9164615 Liu Y. T. Yang J. M. Chen L. Guo T. Jiang Y. ( 2020 , August ). Overview of reinforcement learning based on value and policy . In 2020 Chinese Control And Decision Conference (CCDC) (pp. 598 - 603 ). IEEE . https://doi.org/10.1109/CCDC49329.2020.9164615 Search in Google Scholar

Zhang, Y. (2024). Research on the Application of Artificial Intelligence-based Cost Estimation and Cost Control Methods in Green Buildings. Scalable Computing: Practice and Experience, 25(6), 4772-4779. https://doi.org/10.12694/scpe.v25i6.3293 Zhang Y. ( 2024 ). Research on the Application of Artificial Intelligence-based Cost Estimation and Cost Control Methods in Green Buildings . Scalable Computing: Practice and Experience , 25 ( 6 ), 4772 - 4779 . https://doi.org/10.12694/scpe.v25i6.3293 Search in Google Scholar

Birim, S., Kazancoglu, I., Mangla, S. K., Kahraman, A., & Kazancoglu, Y. (2024). The derived demand for advertising expenses and implications on sustainability: A comparative study using deep learning and traditional machine learning methods. Annals of Operations Research, 339(1), 131-161. https://doi.org/10.1007/s10479-021-04429-x Birim S. Kazancoglu I. Mangla S. K. Kahraman A. Kazancoglu Y. ( 2024 ). The derived demand for advertising expenses and implications on sustainability: A comparative study using deep learning and traditional machine learning methods . Annals of Operations Research , 339 ( 1 ), 131 - 161 . https://doi.org/10.1007/s10479-021-04429-x Search in Google Scholar

Daneva, M. (2010). Balancing uncertainty of context in ERP project estimation: an approach and a case study. Journal of Software Maintenance and Evolution: Research and Practice, 22(5), 329-357. https://doi.org/10.1002/smr.466 Daneva M. ( 2010 ). Balancing uncertainty of context in ERP project estimation: an approach and a case study . Journal of Software Maintenance and Evolution: Research and Practice , 22 ( 5 ), 329 - 357 . https://doi.org/10.1002/smr.466 Search in Google Scholar

Karadimos, P., & Anthopoulos, L. (2024). A taxonomy of machine learning techniques for construction cost estimation. Innovative Infrastructure Solutions, 9(11), 420. https://doi.org/10.1007/s41062-024-01705-0 Karadimos P. Anthopoulos L. ( 2024 ). A taxonomy of machine learning techniques for construction cost estimation . Innovative Infrastructure Solutions , 9 ( 11 ), 420 . https://doi.org/10.1007/s41062-024-01705-0 Search in Google Scholar

Abd Elaziz, M., Dahou, A., Abualigah, L., Yu, L., Alshinwan, M., Khasawneh, A. M., & Lu, S. (2021). Advanced metaheuristic optimization techniques in applications of deep neural networks: a review. Neural Computing and Applications, 1-21. https://doi.org/10.1007/s00521-021-05960-5 Abd Elaziz M. Dahou A. Abualigah L. Yu L. Alshinwan M. Khasawneh A. M. Lu S. ( 2021 ). Advanced metaheuristic optimization techniques in applications of deep neural networks: a review . Neural Computing and Applications , 1 - 21 . https://doi.org/10.1007/s00521-021-05960-5 Search in Google Scholar

Merckx, G., & Chaturvedi, A. (2020). Short vs. long-term procurement contracts when supplier can invest in cost reduction. International Journal of Production Economics, 227, 107652. https://doi.org/10.1016/j.ijpe.2020.107652 Merckx G. Chaturvedi A. ( 2020 ). Short vs. long-term procurement contracts when supplier can invest in cost reduction . International Journal of Production Economics , 227 , 107652 . https://doi.org/10.1016/j.ijpe.2020.107652 Search in Google Scholar

Nian, R., Liu, J., & Huang, B. (2020). A review on reinforcement learning: Introduction and applications in industrial process control. Computers & Chemical Engineering, 139, 106886. https://doi.org/10.1016/j.compchemeng.2020.106886 Nian R. Liu J. Huang B. ( 2020 ). A review on reinforcement learning: Introduction and applications in industrial process control . Computers & Chemical Engineering , 139 , 106886 . https://doi.org/10.1016/j.compchemeng.2020.106886 Search in Google Scholar

Brown, N. K., Garland, A. P., Fadel, G. M., & Li, G. (2022). Deep reinforcement learning for engineering design through topology optimization of elementally discretized design domains. Materials & Design, 218, 110672. https://doi.org/10.1016/j.matdes.2022.110672 Brown N. K. Garland A. P. Fadel G. M. Li G. ( 2022 ). Deep reinforcement learning for engineering design through topology optimization of elementally discretized design domains . Materials & Design , 218 , 110672 . https://doi.org/10.1016/j.matdes.2022.110672 Search in Google Scholar

Barto, A. G. (2021). Reinforcement Learning: An Introduction. SIAM Rev, 6(2), 423. https://doi.org/10.1137/21N975254 Barto A. G. ( 2021 ). Reinforcement Learning: An Introduction. SIAM Rev , 6 ( 2 ), 423 . https://doi.org/10.1137/21N975254 Search in Google Scholar

Zhang, W., Wang, J., Liu, Y., Gao, G., Liang, S., & Ma, H. (2020). Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery. Applied Energy, 275, 115401. https://doi.org/10.1016/j.apenergy.2020.115401 Zhang W. Wang J. Liu Y. Gao G. Liang S. Ma H. ( 2020 ). Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery . Applied Energy , 275 , 115401 . https://doi.org/10.1016/j.apenergy.2020.115401 Search in Google Scholar

Elmousalami, H. H. (2020). Comparison of artificial intelligence techniques for project conceptual cost prediction: A case study and comparative analysis. IEEE Transactions on Engineering Management, 68(1), 183-196. https://doi.org/10.1109/TEM.2020.2972078 Elmousalami H. H. ( 2020 ). Comparison of artificial intelligence techniques for project conceptual cost prediction: A case study and comparative analysis . IEEE Transactions on Engineering Management , 68 ( 1 ), 183 - 196 . https://doi.org/10.1109/TEM.2020.2972078 Search in Google Scholar

Draz, M. M., Emam, O., & Azzam, S. M. (2024). Software cost estimation predication using a convolutional neural network and particle swarm optimization algorithm. Scientific Reports, 14(1), 13129. https://doi.org/10.1038/s41598-024-63025-8 Draz M. M. Emam O. Azzam S. M. ( 2024 ). Software cost estimation predication using a convolutional neural network and particle swarm optimization algorithm . Scientific Reports , 14 ( 1 ), 13129 . https://doi.org/10.1038/s41598-024-63025-8 Search in Google Scholar

Yet, B., Constantinou, A., Fenton, N., Neil, M., Luedeling, E., & Shepherd, K. (2016). A Bayesian network framework for project cost, benefit and risk analysis with an agricultural development case study. Expert Systems with Applications, 60, 141-155. https://doi.org/10.1016/j.eswa.2016.05.005 Yet B. Constantinou A. Fenton N. Neil M. Luedeling E. Shepherd K. ( 2016 ). A Bayesian network framework for project cost, benefit and risk analysis with an agricultural development case study . Expert Systems with Applications , 60 , 141 - 155 . https://doi.org/10.1016/j.eswa.2016.05.005 Search in Google Scholar

ul Hassan, C. A., Khan, M. S., Irfan, R., Iqbal, J., Hussain, S., Sajid Ullah, S., … & Umar, F. (2022). Optimizing Deep Learning Model for Software Cost Estimation Using Hybrid Meta-Heuristic Algorithmic Approach. Computational Intelligence and Neuroscience, 2022(1), 3145956. https://doi.org/10.1155/2022/3145956 ul Hassan C. A. Khan M. S. Irfan R. Iqbal J. Hussain S. Sajid Ullah S. Umar F. ( 2022 ). Optimizing Deep Learning Model for Software Cost Estimation Using Hybrid Meta‐Heuristic Algorithmic Approach . Computational Intelligence and Neuroscience , 2022 ( 1 ), 3145956 . https://doi.org/10.1155/2022/3145956 Search in Google Scholar

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. https://doi.org/10.1109/TKDE.2009.191 Pan S. J. Yang Q. ( 2009 ). A survey on transfer learning . IEEE Transactions on Knowledge and Data Engineering , 22 ( 10 ), 1345 - 1359 . https://doi.org/10.1109/TKDE.2009.191 Search in Google Scholar

Kruekaew, B., & Kimpan, W. (2022). Multi-objective task scheduling optimization for load balancing in cloud computing environment using hybrid artificial bee colony algorithm with reinforcement learning. IEEE Access, 10, 17803-17818. https://doi.org/10.1109/ACCESS.2022.3149955 Kruekaew B. Kimpan W. ( 2022 ). Multi-objective task scheduling optimization for load balancing in cloud computing environment using hybrid artificial bee colony algorithm with reinforcement learning . IEEE Access , 10 , 17803 - 17818 . https://doi.org/10.1109/ACCESS.2022.3149955 Search in Google Scholar

Paraschos, P. D., Koulinas, G. K., & Koulouriotis, D. E. (2024). Reinforcement Learning-Based Optimization for Sustainable and Lean Production within the Context of Industry 4.0. Algorithms, 17(3), 98. https://doi.org/10.3390/a17030098 Paraschos P. D. Koulinas G. K. Koulouriotis D. E. ( 2024 ). Reinforcement Learning-Based Optimization for Sustainable and Lean Production within the Context of Industry 4.0 . Algorithms , 17 ( 3 ), 98 . https://doi.org/10.3390/a17030098 Search in Google Scholar

Li, L., Fan, Y., Tse, M., & Lin, K. Y. (2020). A review of applications in federated learning. Computers & Industrial Engineering, 149, 106854. https://doi.org/10.1016/j.cie.2020.106854 Li L. Fan Y. Tse M. Lin K. Y. ( 2020 ). A review of applications in federated learning . Computers & Industrial Engineering , 149 , 106854 . https://doi.org/10.1016/j.cie.2020.106854 Search in Google Scholar