Research on Intelligent Network Security Event Detection and Emergency Disposal Technology
31 mars 2025
À propos de cet article
Publié en ligne: 31 mars 2025
Reçu: 11 nov. 2024
Accepté: 14 févr. 2025
DOI: https://doi.org/10.2478/amns-2025-0819
Mots clés
© 2025 Wang Xiaoxia, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Identification of different types of attacks in different models
Attack type | Model | Precision | accuracy | Recall | F1 score |
---|---|---|---|---|---|
CNN-LSTM_HMNID | 0.95 | 0.96 | 0.94 | 0.945 | |
DDoS attack | SVM | 0.90 | 0.92 | 0.88 | 0.89 |
Random Forest | 0.92 | 0.93 | 0.90 | 0.91 | |
CNN-LSTM_HMNID | 0.93 | 0.95 | 0.96 | 0.945 | |
Port scanning | SVM | 0.88 | 0.90 | 0.92 | 0.90 |
Random Forest | 0.90 | 0.92 | 0.91 | 0.905 | |
CNN-LSTM_HMNID | 0.91 | 0.93 | 0.92 | 0.915 | |
phishing | SVM | 0.85 | 0.87 | 0.86 | 0.855 |
Random Forest | 0.87 | 0.89 | 0.88 | 0.875 |
Accuracy and false alarm rate of model recognition
data set | Network traffic type | Recognition accuracy (%) | False alarm rate (%) |
---|---|---|---|
Normal flow | 98.5 | 1.5 | |
Data set 1 | Abnormal traffic (DDoS attack) | 96.2 | 3.8 |
Abnormal traffic (port scanning) | 97.8 | 2.2 | |
Normal flow | 97.7 | 2.3 | |
Data set 2 | Abnormal traffic (phishing) | 95.5 | 4.5 |
Abnormal traffic (malware download) | 98.2 | 1.8 | |
Comprehensive data set | All traffic types | 97.3 | 2.7 |
Performance evaluation index
Performance index | Normal flow | Abnormal flow |
---|---|---|
Precision | 0.97 | 0.95 |
Recall | 0.98 | 0.96 |
F1 Score | 0.975 | 0.955 |